Что такое задача коши

Основные понятия и определения дифференциальных уравнений

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь

Подставляя выражения и в дифференциальное уравнение, получим тождество

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

Общий вид уравнения первого порядка

Если уравнение (1) удается разрешить относительно , то получится уравнение первого порядка, разрешенное относительно производной.

Задачей Коши называют задачу нахождения решения уравнения , удовлетворяющего начальному условию (другая запись ).

Геометрически это означает, что ищется интегральная кривая, проходящая через заданную точку плоскости (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение , где функция определена в некоторой области , содержащей точку . Если функция удовлетворяет условиям

а) есть непрерывная функция двух переменных в области имеет частную производную , ограниченную в области , на котором существует единственное решение данного уравнения, удовлетворяющее условию .

Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения , удовлетворяющее условию , хотя в точке не выполняются условия а) или б) или оба вместе.

1. . Здесь . В точках оси условия а) и б) не выполняются (функция и её частная производная разрывны на оси и неограниченны при ), но через каждую точку оси проходит единственная интегральная кривая (рис. 2).

2. . Правая часть уравнения и ее частная производная непрерывны по во всех точках плоскости . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость .

3. . Правая часть уравнения определена и непрерывна во всех точках плоскости . Частная производная обращается в бесконечность при , т.е. на оси , так что при нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение . Таким образом, через каждую точку оси проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).

Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол и отрезков оси , например, и др., так что через каждую точку оси проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .

Говорят, что функция , определенная в некоторой области , если существует такая постоянная ( постоянная Липшица ), что для любых из

Существование в области достаточно для того, чтобы функция удовлетворяла в ; последняя может даже не существовать. Например, для уравнения функция не дифференцируема по в точке , но условие Липшица в окрестности этой точки выполняется. В самом деле,

поскольку а . Таким образом, условие Липшица выполняется с постоянной

Теорема. Если функция непрерывна и удовлетворяет условию Липшица по в области

имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение

Нетрудно видеть, что функция непрерывна; с другой стороны,

и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат , так как множитель при оказывается неограниченным при где — произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию

Общим решением дифференциального уравнения (2) называется функция

зависящая от одной произвольной постоянной , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной ;

2) каково бы ни было начальное условие

можно подобрать такое значение постоянной , что решение будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной .

Пример 1. Проверить, что функция есть общее решение дифференциального уравнения и найти частное решение, удовлетворяющее начальному условию . Дать геометрическое истолкование результата.

Решение. Функция удовлетворяет данному уравнению при любых значениях произвольной постоянной . В самом деле,

Зададим произвольное начальное условие . Полагая и в равенстве , найдем, что . Подставив это значение в данную функцию, будем иметь . Эта функция удовлетворяет заданному начальному условию: положив , получим . Итак, функция является общим решением данного уравнения.

В частности, полагая и , получим частное решение .

Общее решение данного уравнения, т.е. функция , определяет в плоскости семейство параллельных прямых с угловым коэффициентом плоскости проходит единственная интегральная линия . Частное решение определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция есть общее решение уравнения и найти частное решение, удовлетворяющее начальному условию .

Решение. Имеем . Подставляя в данное уравнение выражения и , получаем , т. е. функция удовлетворяет данному уравнению при любых значениях постоянной .

Зададим произвольное начальное условие . Подставив и вместо в функцию , будем иметь , откуда . Функция удовлетворяет начальному условию. Действительно, полагая , получим . Функция есть общее решение данного уравнения.

При и получим частное решение .

С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку (рис.5).

Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.

Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.

Так как с геометрической точки зрения координаты равноправны, то наряду с уравнением мы будем рассматривать уравнение .

Задача Коши для дифференциального уравнения

Найти решение задачи Коши для дифференциального уравнения — это значит, найти общее решение, удовлетворяющее дополнительным условиям. Конкретно говоря, необходимо численно определить в общем решении все константы, количество которых равно порядку ДУ. Для понимания рассмотрим примеры задач.

Перед нами ДУ с разделяющимися переменными. Чтобы это понять достаточно записать производную в виде $y’=frac$. Затем по переносим переменные по разные стороны уравнения. $$frac=frac>$$ $$dy = frac>$$Интегрируем обе части равенства, используя таблицу интегрирования $$int dy = int frac>,$$ получаем общее решение дифференциального уравнения $$y = ln|x+sqrt| + C.$$

Зная общее решение можно перейти к задаче Коши. Необходимо найти чем равна константа $C$. Для этого воспользуемся данными, указанными в условии к заданию $y(1)=0$. В нём $x=1$ и $y=0$. Берем и подставляем эти значения в общее решение ДУ $$ln|1+sqrt| + C = 0,$$ $$ln1+C=0,$$ $$C=0.$$

Теперь, зная, что $C=0$ можно записать найденное решение задачи Коши в окончательном виде $$y=ln|x+sqrt|.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Перед нами линейное ДУ первого порядка. Решим его методом Бернулли с помощью подстановки $y=uv Rightarrow y’ = u’v+uv’$. Получаем: $$u’v+uv’+uvcos x=e^.$$ Выносим за скобки $u$ и составляем систему уравнений путем приравнивания скобок к нулю. $$u’v+u(v’+vcos x)=e^$$ $$begin v’+vcos x=0 \ u’v=e^ end$$

В первом уравнении необходимо разделить переменные и найти чему равно $v$, чтобы подставить во второе уравнение для нахождения $u$. $$begin frac+vcos x=0 \ u’v=e^ end Leftrightarrow begin frac=-cos x dx \ u’v=e^ end$$ Интегрируем первое уравнение $$begin int frac=-int cos x dx \ u’v=e^ end Leftrightarrow begin ln|v|=-sin x \ u’v=e^ end,$$ $$begin v=e^ \ u’v=e^ end Leftrightarrow begin v=e^ \ u’ = 1 end.$$Обратите внимание что во второе уравнение подставили полученное $v=e^$ и после сокращения получилась единица. В итоге система имеет решение $$begin v=e^ \ u = x+C end.$$

Вспоминаем про подстановку, которую проводили в самом начале решения задачи $y=uv$. Зная теперь $u$ и $v$ можно записать общее решение ДУ $$y=(x+C)e^.$$ В условии задания просят найти решение дифференциального уравнения удовлетворяющее условию $y(0)=0$, поэтому вместо $x$ и $y$ подставим нули и вычислим $C$ из последнего уравнения: $$(0+C)e^ = 0,$$ $$C=0.$$ Вот теперь можно записать окончательный ответ решения задачи Коши $$y = xe^$$

Дано неоднородное ДУ второго порядка с постоянными коэффициентами. Общее решение которого будет иметь вид $y_text = y_text + y_text$. Для начала находим общее решение однородного уравнения $y_$, затем частное решение неоднородного уравнения $y_text$ с помощью метода подбора правой части уравнения.

На первом этапе решаем уравнение в качестве однородного без правой части, то есть меняем её на ноль. Заменяем все $y$ на новую переменную $lambda$, показатель степени которой будет равен порядку производной. $$y»-y=0,$$ $$lambda^2 — 1 = 0,$$ $$(lambda-1)(lambda+1)=0,$$ $$lambda_1 = -1, lambda_2 = 1.$$ Теперь можно записать общее решение однородного ДУ. $$y_text = C_1e^+C_2e^ <-lambda x>= C_1e^+C_2e^$$

Переходим к получению $y_text$. Смотрим на правую часть уравнения, данного в условии задачи. В неё входят синус и косинус, умноженные на многочлены нулевой степени. Значит, частное решение ищем в виде $y_text = Asin x — Bcos x$. Находим вторую производную данного выражения. $$y’ = Acos x + Bsin x,$$ $$y»=-Asin x + Bcos x.$$ Подставляем $y$ и $y»$ в исходное уравнение из условия задачи, чтобы найти неизвестные коэффициенты $A$ и $B$. $$-Asin x + Bcos x — Asin x + Bcos x = 2sin x — 4cos x$$ После приведения подобных получаем $$-2Asin x + 2Bcos x = 2sin x — 4cos x.$$ Далее составляем систему из двух уравнений благодаря коэффициентам перед синусом и косинусом левой и правой части уравнения. $$begin -2A = 2 \ 2B = -4 end Leftrightarrow begin A = -1 \ B = -2 end$$ Благодаря полученным коэффициентам $A$ и $B$ записываем $$y_text = -sin x + 2cos x$$

Итак, общее решение неоднородного дифференциального уравнения в итоге будет иметь вид $$y_text = y_text + y_text = C_1e^+C_2e^ -sin x + 2cos x.$$

Так как требуется найти решение задачи Коши, то ход действий на этом не закончен. Переходим к вычислению коэффициентов $C_1$ и $C_2$.

Берём первую производную $y’ = C_1e^x — C_2e^ — cos x — 2sin x$.

Теперь можно составить систему уравнений $$begin y'(0)=0 \ y(0) = 0 end Leftrightarrow begin C_1 — C_2 — 1 = 0 \ C_1 + C_2 + 2 = 0 end.$$ Решаем систему уравнений. $$begin C_1 = C_2 + 1 \ C_2 + 1 + C_2 + 2 = 0 end Leftrightarrow begin C_1 = C_2 + 1 \ C_2 = -frac end Leftrightarrow begin C_1 = -frac \ C_2 = -frac end.$$

Теперь подставляя полученные константы в общее решение дифференциального уравнения записываем решение задачи Коши в окончательном виде $$y = -frace^x — frace^ -sin x + 2cos x.$$

Коши задача

Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

Задача Коши обычно возникает при анализе процессов, определяемых дифференциальным законом и начальным состоянием, математическим выражением которых и являются уравнение и начальное условие (откуда терминология и выбор обозначений: начальные данные задаются при t = 0 , а решение отыскивается при t > 0 ).

От краевых задач задача Коши отличается тем, что область, в которой должно быть определено искомое решение, здесь заранее не указывается. Тем не менее, задачу Коши можно рассматривать как одну из краевых задач.

Основные вопросы, которые связаны с задачей Коши, таковы:

  1. Существует ли (хотя бы локально) решение задачи Коши?
  2. Если решение существует, то какова область его существования?
  3. Является ли решение единственным?
  4. Если решение единственно, то будет ли оно корректным, то есть непрерывным (в каком-либо смысле) относительно начальных данных?

Говорят, что задача Коши имеет единственное решение, если она имеет решение y = f(x) и никакое другое решение не отвечает интегральной кривой, которая в сколь угодно малой выколотой окрестности точки (x0,y0) имеет поле направлений, совпадающее с полем направлений y = f(x) . Точка (x0,y0) задаёт начальные условия.

Содержание

Различные постановки задачи Коши

  • ОДУ первого порядка, разрешённая относительно старшей производной
  • Система nОДУ первого порядка, разрешённая относительно старших производных
  • ОДУn -го порядка, разрешённая относительно старшей производной

Свойства задачи Коши

См. также

Литература

А.Н. Тихонов, А.Б. Васильева, А.Г. Свешников Курс высшей математики и математической физики. Дифференциальные уравнения. — Физматлит, 2005. — ISBN 5-9221-0277-X

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Коши задача» в других словарях:

Коши задача — одна из основных задач теории дифференциальных уравнениний. Заключается в нахождении решения такого уравнения, удовлетворяющего так называемым начальным условиям. Например, для уравнения dy = 2xdx можно поставить Коши задачу: найти решение… … Энциклопедический словарь

КОШИ ЗАДАЧА — задача о нахождении решения дифференц. ур ния (обыкновенного или в частных производных), удовлетворяющего нач. условиям. Рассмотрена в 1823 24 О. Коши (A. Cauchy). Примером К. з. может служить осн. задача механики, когда по известным нач.… … Физическая энциклопедия

КОШИ ЗАДАЧА — одна из основных задач теории дифференциальных уравнений. Заключается в нахождении решения такого уравнения, удовлетворяющего т. н. начальным условиям. Напр., для уравнения dy = 2xdx можно поставить Коши задачу: найти решение у = у(х),… … Большой Энциклопедический словарь

КОШИ ЗАДАЧА — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в отыскании решения (интеграла) дифференциального уравнения, удовлетворяющего так наз. начальным условиям (начальным данным). К. з. обычно… … Математическая энциклопедия

Коши задача — одна из основных задач теории дифференциальных уравнений (См. Дифференциальные уравнения), впервые систематически изучавшаяся О. Коши. Заключается в нахождении решения u (x, t); х = (x1. xn) дифференциального уравнения вида: … … Большая советская энциклопедия

КОШИ ЗАДАЧА — численные методы решения для обыкновенного дифференциального уравнения. Задачей Коши наз. задача определения функции или нескольких функций, удовлетворяющих одному или, соответственно, системе дифференциальных уравнений и принимающих заданные… … Математическая энциклопедия

КОШИ ЗАДАЧА — одна из оси. задач теории дифференц. ур ний. Заключается в нахождении решения такого ур ния, удовлетворяющего т. н.начальным условиям. Напр., для ур ния dy = 2xdx можно поставить К. з.: найти решение у = у(х), принимающее при х0 = 0 значение… … Естествознание. Энциклопедический словарь

КОШИ ХАРАКТЕРИСТИЧЕСКАЯ ЗАДАЧА — задача отыскания решения дифференциальных уравнений или систем уравнений с частными производными по заданным его значениям на характеристических многообразиях. Для широкого класса уравнений гиперболического и параболического типов в пространстве… … Математическая энциклопедия

Коши — (Cauchy) Огюстен Луи (21.8.1789, Париж, 23.5.1857, Со), французский математик, член Парижской АН (1816). Окончил Политехническую школу (1807) и Школу мостов и дорог (1810) в Париже. В 1810 13 работал инженером в г. Шербур. В 1816 30… … Большая советская энциклопедия

Задача Коши — методы и примеры решения дифференциальных уравнений

При рассмотрении дифференциальных уравнений важным в процессе анализа является исследование существования решений задачи Коши. Кроме этого, выясняется количество возможных ответов и область удовлетворяющих чисел. Часто правильное решение называется частным и позволяет довольно точно установить пределы функции. Изучают такие действия на уроках математического анализа, а сами задания относятся к среднему уровню знаний.

  • Принцип и понятие
  • Алгоритм нахождения
  • Примеры задач
  • Операционный метод
  • Использование онлайн-калькулятора

Решения и нахождение существования задачи Коши

Принцип и понятие

Под задачей Коши для дифференциального уравнения понимают выражение вида: y’ = f (x, y) с начальным условием, соответствующим равенству: y (x0) = y0. По сути, это обозначает, что необходимо найти такое решение уравнения, которое проходит через заданную точку игрек и икс нулевое. Решением задачи называется функция, заданная на указанном интервале в окрестности точки икс нулевое, то есть: x Є (x0 — q, x0 + q).

Для проведения анализа функции должны выполняться следующие критерии:

  • y (x0) = y0;
  • y’ = f (x, y (x));
  • V x Є (x0 — q, x0 + q).

Анализ функции

Следует отметить, что решение Коши включает в себя и сам интервал икс нулевое плюс минус кью, фактически q-окрестность. Это обозначает, что одна и та же функция, задаваемая одной формулой, но рассматриваемая на разных интервалах, представляет два разных нахождения задачи Коши. Отсюда возникает вопрос, при каких же ответах существует решение Коши, а также когда оно будет единственным.

Существует теорема, гарантирующая единственность какого-то решения задачи. На самом деле возможность аналитического подхода Коши требует лишь главного условия, при котором функция f будет непрерывной в какой-то окрестности точки x0, y0. Но для доказательства единственности этого недостаточно. Для нормального случая необходимо следующее:

  1. Функция f (x, y) непрерывна в некоторой окрестности точки (x0, y0).
  2. Существует такая константа C, что для любых точек икс и игрек выполняется неравенство: |f (x, y) — f (x2, y2)| ⩽ C |y1 — y2|.

По игреку функция должна иметь обыкновенный рост, то есть не убыстряющийся (локальный подъём не превышать линейный). Если эти два условия выполняются, то решение Коши существует и оно будет единственным. Это значит, что тогда у точки икс нулевое найдётся такая окрестность, в которой существует решение и к тому же оно будет единственным.

А это обозначает, что любая другая функция в этой окрестности, удовлетворяющая уравнениям начальных условий, совпадает с той, существование которой утверждается. При этом на практике проверка условия на самом деле вещь не очень сложная, особенно если функция f (y) имеет в окрестности ограниченную производную.

Алгоритм нахождения

Пусть имеется функция у’ = 2 * √ |y| и условие что y (0) = 0. Необходимо её исследовать. Тут можно заметить, что в этом случае функция зависит только от игрека и условию не удовлетворяет. В окрестностях точки с координатами (0, 0) она не удовлетворяет условию, так как любая окрестность захватывает ноль, а у корня квадратного по игреку будет бесконечная производная.

Это приводит не к единственности получения результатов. Так, у уравнения есть два решения: y1 тождественный нулю; y2 равняется x2. Согласно условию, игрек стоит по модулю, точнее, можно сказать, что для отрицательных значений икс будет меньше ноля, а положительных — больше.

Главный же вопрос заключается в продолжаемости анализа. Доказывается возможность простым построением решения с использованием специальных условий. В итоге должна быть найдена окрестность в точке x0. То есть берётся уравнение и точка с начальными координатами, затем выясняется, что в окрестности выполнены условия теоремы и строится решение.

Решения и нахождение существования задачи Коши

Затем исследуется другая точка и изучается структура её окрестности. Например, обнаруживается, что условия существования единственности выполняются. Согласно теореме, тогда можно будет строить решение, где в качестве начальной точки будет взята любая координата. Другими словами, получается более широкое решение. Поэтому возникает вопрос, насколько можно приблизить точность ответа. Практические примеры показывают, что иногда можно двигаться до бесконечности, а в некоторых случаях сделать не более трёх шагов.

Если есть два уравнения y’ = f (x, y); y (x0) = y0 имеющие два решения: y1 (x), x Є I1 (эX), y2 (x), x єI2 (єX0). Тогда можно утверждать, что игрек два будет продолжением решения y1 (x) если в I2 входит I1, а y2 (x) равняется y1 (x) для любого икс из интервала I1. Следует учесть, что в этом определении в качестве областей функции всегда рассматривается интервал.

В изучении исследуются и матричные функциональные системы, состоящие из нескольких переменных A (z 1, z 2, …, zn). При этом z являются вещественными, а элементы матрицы могут быть как вещественными, так и комплексными. Исходя из этого даётся определение того, что функция, описываемая матрицей, непрерывна тогда, когда все элементы непрерывны в точке или на некотором множестве.

При определении используют численные и векторные функции от аргумента: y = (x), где y — это столбец от набора игреков, а икс со штрихом — от набора иксов. Таким образом, обобщённым решением будет такое действие, которое не будет иметь нетривиального продолжения, то есть вторые интервалы содержать первые.

Примеры задач

На практических занятиях по высшей математике студентам предлагается для понимания курса выполнить ряд практических заданий. Существует типовой набор задач, научившись решать которые учащийся досконально разберётся в теме. Вот некоторые из них.

Первый пример. Имеется уравнение y’ = (2y / x lnx) + 1/x, для которого установлено начальное условие y (e) = 0. Необходимо найти решение, проходящее через точку e. Перед тем как приступить непосредственно к решению, необходимо отметить, что функция f (x, y) определённа всюду, за исключением прямых x = 0 и x = 1. Отсюда следует, что краевое решение не может быть вычислено на интервале от нуля до единицы.

Решение задач

В этом примере должен содержаться интервал, имеющий координату точки e по иксу. Он не может включать значения меньше единицы, так как необходимо, чтобы выполнялось заданное условием уравнение, которое в точке x = 1 теряет смысл, ведь в ней функция неопределённа. Установив это, можно переходить к анализу уравнения.

Заданное равенство является линейным — неоднородным уравнением первого порядка. Для решения нужно сначала рассмотреть левое соотношение: y’ = 2y / x * lnx. Добавив константу, уравнение можно переписать как y = c * e. Теперь необходимо взять интеграл исходя из первообразной формулы: ∫ 2 dx / (x *lnx).

После того как будет найдена постоянная, через общий интегральный метод с учётом условия определения функции, уравнение в окрестности точки e будет иметь решение вида: y = ln2x — lnx. Из полученного выражения можно сделать вывод, что функция будет определена для всех положительных иксов, но рассматривать её необходимо от единицы до плюс бесконечности. Это и будет максимальное непродолжаемое решение задачи: xЄ (1, + ∞).

Второй пример. Пусть имеется функция y’ = y / (1+x 2 ) с начальным условием: y = y (0). В задании нужно будет рассмотреть дифференциальную кривую уравнения, проходящего через точку y0. Нужно заметить, что функция f (x, y) в любой ограниченной области двумерной плоскости удовлетворяет условию регулярности для теоремы существования единственности. В задаче спрашивается, каким должен быть y0, если предел максимального решения при иксе, стремящемся к плюс бесконечности, равняется единице.

Как решать задачу Коши

Учитывая, что в этой постановке заложено, чтобы решение было определённо до плюс бесконечности и то, что уравнение является однородно линейным, по общей формуле особое решение будет иметь вид: y = c * e arctgx . Игрек нулевое не может равняться нулю, ведь в ином случае решением уравнения будет тождественный ноль и заданное условие выполняться не будет. В итоге получится, что y = y0 * e arctgx . Это решение и является подходящей функцией для любого интервала.

Операционный метод

Решение задачи Коши (примеров) целесообразно выполнять экономичным методом интегрирования линейных выражений, содержащих постоянные коэффициенты. Суть способа сводится к решению алгебраических равенств или неравенств. Алгоритм исследования заключается в следующих действиях:

Решение задачи Коши

  1. Функции Y (p) и F (p) обозначают как изображения для y (x) и f (x).
  2. Используя главные преобразования Лапласа, обрабатывая изображения, получают (pn (Yp) — p n -1 y 0 — …- yn -1) + a 1 (p n -1 y (p) — p n -2 y 0 — … — yn -2) + … + anY (p) = F (p) или, A (p)Y (p)+B (p) = F (p), причём A (p) и B (p) являются многочленами.
  3. Найденное решение y (p) = (F (p) — B (p)) / A (p) и будет искомым y (x) для искомого y (p).

Например, пусть необходимо решить уравнение вида: x» + 4x = sin (2t), при x (0) = 1, x'(0) = -2. Классическим методом находить ответ довольно трудоёмко, поэтому имеет смысл для заданного уравнения использовать операционное исчисление. Для начала следует ввести замену Lx = x. Затем к обеим частям равенства применить преобразование Лапласа: Lx » + L 4 x = L * sin (2 t). Отсюда: Lx = x, Lx » = p 2 x — px (0) — x'(0). Функция Лапласа используется для преобразования вещественной переменной в выражение с комплексной переменной и наоборот. Это и позволяет использовать её при решениях дифференциальных уравнений и систем.

На следующем этапе нужно подставить исходные данные в равенство: Lx» = p 2 x — p + 2. Далее, следует выполнить преобразование и выразить неизвестную функцию. В итоге должно получиться выражение: X = (p 3 — 2 p 2 — 4 p — 6) / (p 2 + 4) 2 . Теперь можно найти оригинал изображений: x = L-1 <(p3 — 2p2 + 4p — 6) / (p2+4)2)>= cos (2t) — sin (2t) + (sin (2t) — 2tcos (2t))/8.

Использование онлайн-калькулятора

Часто решение задач по рассматриваемой теме связано с большими трудозатратами. Это касается времени и повышенного внимания. На практике не всегда получается правильно применить алгоритм и избежать ошибок. Поэтому имеет смысл для сложных заданий использовать онлайн-калькулятор. Решения на задачу Коши с его помощью доступны любому заинтересованному, имеющему доступ к интернету и устройство, поддерживающее работу веб-обозревателя.

Использование онлайн-калькулятора

В интернете существует довольно большое количество различных математических онлайн-решителей. В своём большинстве они бесплатны и ориентированы на работу даже с людьми, совершенно не разбирающимися в тематике. Поэтому они привлекательны не только как инструмент, предоставляющий быстрый и правильный ответ на поставленную задачу, но и как обучающие программы.

Всё дело в том, что на страницах сервисов, предлагающих такого рода услуги, содержится вся необходимая теоретическая информация. Кроме этого, они предлагают к рассмотрению типовые примеры с подробным объяснением решения. Из онлайн-калькуляторов, предоставляющих бесплатный доступ к своим услугам в русском сегменте интернета, можно отметить следующие:

  1. Math.semestr.
  2. Allcalc.
  3. Kontrolnaya-rabota.
  4. Matematikam.
  5. Primat.

Приведённые сервисы помогают без труда найти студентам решение дифференциального уравнения с заданными начальными условиями. Для этого в предлагаемую форму необходимо записать дифуравнение и через запятую начальные данные. Затем просто нажать интерактивную кнопку «Решить» и через некоторое время на экране дисплея отобразится ответ.

Работа сайта

Для правильной записи уравнения существуют подсказки, так что разобраться, как работает сайт, сможет пользователь даже со слабой компьютерной подготовкой. Кроме этого, некоторые сервисы предлагают не просто ответ, а и пошаговое решение, к которому даётся комментарий. Решив несколько заданий, учащийся сможет разобраться в алгоритме и вычислять уравнения уже самостоятельно.

Следует отметить, что предложенные сервисы могут находить ответ для любой сложности математической задачи, например, вычисляя устойчивость математических моделей. Они также востребованы в инженерии и научных исследованиях, связанных с анализом функций. Для таких расчётов важны точность и время, что вполне могут обеспечить математические онлайн-сервисы.

Порядок дифференциального уравнения и его решения, задача Коши

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными. Это уравнения, связывающие независимые переменные , неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово «обыкновенные».

Примеры дифференциальных уравнений:

Уравнение (1) — четвёртого порядка, уравнение (2) — третьего порядка, уравнения (3) и (4) — второго порядка, уравнение (5) — первого порядка.

Дифференциальное уравнение n-го порядка не обязательно должно содержать явно функцию, все её производные от первого до n-го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) — производной второго порядка и функции; в уравнении (4) — независимой переменной; в уравнении (5) — функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x), при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием.

Пример 1. Найти решение дифференциального уравнения .

Решение. Запишем данное уравнение в виде . Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления, есть первообразная для , т. е.

Это и есть решение данного дифференциального уравнения. Меняя в нём C, будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n-го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения и частное решение при .

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

В результате мы получили общее решение —

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

Если кроме дифференциального уравнения задано начальное условие в виде , то такая задача называется задачей Коши. В общее решение уравнения подставляют значения и и находят значение произвольной постоянной C, а затем частное решение уравнения при найденном значении C. Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии .

Решение. Подставим в общее решение значения из начального условия y = 3, x = 1. Получаем

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных, в том числе сложных функций. Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения .

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

Применяем метод интегрирования заменой переменной (подстановкой). Пусть , тогда .

Требуется взять dx и теперь — внимание — делаем это по правилам дифференцирования сложной функции, так как x и есть сложная функция («яблоко» — извлечение квадратного корня или, что то же самое — возведение в степень «одна вторая», а «фарш» — самое выражение под корнем):

Возвращаясь к переменной x, получаем:

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x. Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.

Пример 5. Найти общее решение дифференциального уравнения .

Решение. Как видим, переменная x в уравнении отсутствует. Вспоминаем из курса дифференциального исчисления, что производная может быть записана также в виде . В результате уравнение приобретает вид

то есть, в нём в некотором виде появился x.

Теперь вспомнаем одно из свойств пропорции: из пропорции выткают следующие пропорции:

то есть в пропорции можно менять местами крайние и средние члены или те и другие одновременно.

Применяя это свойство, преобразуем уравнение к виду

после чего интегрируем обе части уравнения:

Оба интеграла — табличные, находим их:

и получаем решение данного дифференциалного уравнения первого порядка:

Эта статья представила необходимый минимум сведений о дифференциальных уравнениях и их решениях и должна помочь вам уверенно и увлечённо перейти к изучению различных видов дифференциальных уравнений.

Дифференциальные уравнения для «чайников». Примеры решения

дифференциальные уравнения для чайников примеры

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х), которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Решение уравнений

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Математика

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все «игреки», а в другой – «иксы»:

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему «Как решать дифференциальные уравнения»:

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

6.02. Задача Коши для дифференциального уравнения первого порядка

Общее решение любого дифференциального уравнения первого порядка F(х; у; у’) = 0, как это следует из схемы его получения (1.3), содержит бесчисленное множество частных решений. Возникает естественный вопрос: как из этого множество частных решений выделить интересующее нас конкретное частное решение? Иначе говоря, как из множества интегральных кривых данного дифференциального уравнения выделить нужную интегральную кривую?

Ответ почти очевиден: для этого на плоскости Хоу нужно задать некоторую точку , через которую должна пройти искомая интегральная кривая. Тогда её уравнение и будет тем частным решением, которое выделяется из прочих (рис. 6.2).

Задание точки равносильно заданию условия для искомого, выделяемого из прочих, частного решения данного дифференциального уравнения. Это условие называется Начальным условием для дифференциального уравнения первого порядка F(х; у; у’) = 0. Начальным оно называется потому, что очень часто в реальных задачах по исследованию различного рода процессов роль независимой переменной Х играет время T, а начальным значением Х0 является начальный момент времени T0 (обычно T0 = 0). Тогда начальное условие показывает, какое значение У0 имела искомая функция , описывающая исследуемый процесс, в начальный момент времени Х0. Ну, а сама функция , если нас не интересует предистория процесса, то есть времена Х < х0, ищется для Х > х0.

Если дифференциальное уравнение первого порядка F(х; у; у’) = 0 задано вместе с начальным для него условием , То говорят, что для этого уравнения задана Задача Коши:

Решить её — это значит найти те частные решения дифференциального уравнения F(х; у; у’) = 0 , которые еще удовлетворяют и заданному начальному условию . С точки зрения рисунка 6.2 решить задачу Коши (2.1) – это значит найти уравнения всех интегральных кривых дифференциального уравнения F(х; у; у’) = 0, проходящих через начальную точку .

Как правило, задача Коши (2.1) имеет единственное решение . То есть через заданную начальную точку проходит единственная интегральная кривая дифференциального уравнения F(х; у; у’) = 0 (как на рис. 6.2). Но бывает, что задача Коши не имеет решений. То есть бывает, что ни одна из интегральных кривых не проходит через заданную начальную точку . Тогда такая точка называется Особой точкой дифференциального уравнения. А бывает, что задача Коши имеет несколько решений. То есть бывает, что через начальную точку проходит несколько интегральных кривых. Сколько решений будет у задачи Коши (2.1) и каковы они, выясняется в процессе её решения. А Схема решения задачи Коши (2.1) такова:

1. Решаем дифференциальное уравнение F(х; у; у’) = 0 и находим все его решения. То есть находим общее решение (общий интеграл) и возможные особые решения .

2. Подставляем начальные значения Х = х0 И У = у0 в общее решение и находим соответствующее значение (значения) константы С:

3. Подставляем каждое из найденных значений С В общее решение и получаем частные решения

Являющиеся решением задачи Коши. Это те решения этой задачи, которые выделяются из общего решения дифференцированного уравнения F(х; у; у’) = 0.

4. Проверяем, нет ли среди особых решений Дифференциального уравнения F(х; у; у’) = 0 таких, которые удовлетворяют начальному условию У(х0) = у0. Если такие найдутся, они тоже будут решениями задачи Коши (2.1).

Пример1. Решить задачу Коши:

1. Сначала решим дифференциальное уравнение . Оно уже решено ранее – его решение найдено в примере 3, §1:

— общее решение; – особое решение.

2. Подставим начальные значения В общее решение и найдем С:

3. Подставим в общее решение и получим частное решение

Эта функция является решением данной задачи Коши.

4. Обратим внимание на особое решение У=0. Начальному условию У(0)=1 оно не удовлетворяет, поэтому решением данной задачи Коши не является.

Ответ: — единственное решение поставленной задачи Коши.

Пример 2. Материальное тело поднято на высоту H и в начальный момент времени T=0 отпущено в свободное падение. Описать математически процесс падения тела. А именно, найти зависимость ν = ν(T) скорости ν падающего тела от времени T, и найти зависимость S = S(T) пути S, пройденного падающим телом, от времени T. Сопротивлением воздуха пренебречь.

Решение. Как известно, все свободно падающие тела падают с постоянным ускорением G ≈ 9,8 м/сек2 — с ускорением свободного падения. А так как ускорение – это производная от скорости, то получаем: . Это — дифференциальное уравнение первого порядка для искомой функции . Учтём еше, что в начальный момент времени T = 0 тело покоилось, а значит, выполняется начальное условие: . В итоге для определения функции Получаем задачу Коши:

Решим эту задачу.

1. Сначала решим дифференциальное уравнения:

Это – общее решение уравнения , содержащее все его решения. Особых решений у него нет.

2. Используем начальное условие и найдем С:

0 = G0+С => С = 0.

3. Подставим С=0 в общее решение V=Gt+C и получим окончательно: V=Gt. Это и есть решение поставленной задачи Коши (единственное). И заодно V=Gt — это искомая зависимость скорости V падающего тела от времени T.

А теперь займёмся поиском зависимости S=S(t) Пути S От времени T. Учтём, что и что . Тогда для определения этой зависимости получим следующую задачу Коши:

Решим эту задачу.

1. Сначала решим дифференциальное уравнение :

Это — общее решение уравнения , содержащее все его решения. Особых решений у него нет.

2. Используем начальное условие и найдём С:

3. Подставим С=0 в общее решение и получим окончательно: . Это и есть решение рассматриваемой задачи Коши. И заодно — это искомая зависимость пути S, проходимого свободно падающим телом, от времени T.

Ответ: — известные школьные формулы.

Пример3. Дать математическое описание демографического процесса (процесса изменение численности населения со временем) для достаточно крупного населённого региона, если в начальный момент времени численность населения региона составляла человек.

Решение. Пусть – искомая зависимость численности населения региона от времени . И пусть за время , прошедшее с некоторого момента до момента , родилось человек и умерло человек. Эти количества, очевидно, пропорциональны как исходной (в момент ) численности населения , так и величине временного промежутка . То есть

Здесь и – некоторые числовые коэффициенты, связанные соответственно с уровнем рождаемости и уровнем смертности в данном регионе. Тогда общее изменение численности населения за время найдется по формуле:

Здесь . Из получённого равенства следует: . Устремляя здесь (при этом, очевидно, и ), то есть переходя к бесконечно малым и , получим:

Это – дифференциальное уравнение первого порядка для искомой функции . Дополняя это заданным начальным условием , получим для этой функции задачу Коши:

Решим эту задачу.

1. Сначала решим дифференциальное уравнение . Функция является его очевидным частным решением. Но это, очевидно, не та функция, которую мы ищем – она не удовлетворяет начальному условию, да и вообще она означает, что население в регионе отсутствует.

Будем искать те решения уравнения для которых :

Итак, — общее решение дифференциального уравнения . В него, кстати, при С = 0 входит и отмеченное ранее нулевое решение . То есть в найденном общем решении содержатся все решения дифференциального уравнения.

2. Используем начальное условие и найдём С:

3. Подставим в общее решение и получим искомое решение задачи Коши:

Это и есть искомая зависимость Численности населения региона от времени .

Проанализируем эту зависимость.

а) Если , то численность населения экспоненциально растёт со временем (рис. 6.3(а)).

б) Если , то численность населения Экспоненциально убывает со временем (рис. 6.3(б)).

в) Если , то , то есть численность населения региона не меняется (рис. 6.3(в).

Какой именно будет величина для данного региона, можно выяснить опытным путём. Пусть, например, перепись населения показала, что в некоторый момент времени в регионе проживало человек. Подставляя эти данные в формулу , можем найти :

Примечание. Полученная формула будет верно описывать демографический процесс в регионе, если уровень рождаемости и уровень смертности в нем не меняются со временем. То есть если коэффициенты и рождаемости и смертности не меняются со временем. А значит, если не меняется со временем и итоговый коэффициент . Но это, как известно, не так: с течением времени, в силу разных причин, ситуация и со смертностью, и с рождаемостью может существенно измениться. Поэтому полученную формулу при конкретном числовом значении оправданно применять лишь на протяжении достаточно ограниченного периода времени. В другой период времени тоже можно применять эту формулу, но уже при другом значении .

Пример 4. Рассмотрим задачу о математической модели естественного роста выпуска продукции.

Пусть — объем продукции некоторого предприятия, реализованной моменту времени . Будем считать, что вся продукция реализуется по некоторой фиксированной цене за единицу продукции независимо от объема продаж . Это значит, что рынок данной продукции длительное время является насыщенным – удается продавать по фиксированной цене практически любые объемы этой продукции.

Доход от продаж составит: . Будем считать, что некоторая часть этого дохода используется в качестве инвестиций в производство выпускаемой продукции. То есть объем инвестиций составит:

Здесь – так называется Норма инвестиций. Она показывает, какая часть дохода возвращается в производство.

Чем больше объем инвестиций , тем быстрее растёт объем производства . В модели естественного роста это значит, что скорость роста объема производства (так называемая Акселерация производства) пропорциональна объему инвестиций :

— так называемая Норма акселерации, которая показывает, каким должен быть объём инвестиций , чтобы обеспечить единичную скорость роста объема производства (обеспечить рост на единицу продукции за единицу времени). Подставляя (2.4) в (2.5), получим

Где – числовой коэффициент. Равенство (2.7) представляет собой дифференциальное уравнение первого порядка для функции . Дополняя его некоторым начальным условием , получим задачу Коши:

Эта задача полностью совпадает с задачей Коши для демографического процесса (см. пример 3). Значит, у них полностью совпадают и решения:

Заметим, что условие постоянства цены единицы продаваемой продукции, то есть условие насыщенности рынка, не может выполнятся всегда, при любых . С увеличением объема продаж на некотором этапе рынок насыщается, спрос на товар падает, и дальнейшее увеличении объема продаж возможно лишь при снижении цены на него – в соответствии с классической убывающей кривой спроса . Если учесть эту зависимость от , то выражение (2.4) для примет вид:

А вместо (2.7) из (2.5) получим:

Где . Это дифференциальное уравнение вместе с начальным условием составит задачу Коши:

Для определения функции , характеризующей объем продаж при насыщенном спросе, когда рост объема продаж возможен лишь при снижении цены на продаваемую продукцию. Эта функция, естественно, будет отличаться от функции (2.9) (будет более сложной).

1. Сформулировать и решить задачу по определению скорости V=V(T) свободно падающего тела массой M при условии, что учитывается сопротивление воздуха, пропорциональное скорости падения тела.

2. Сформулировать и решить задачу по определению объема У=y(t) реализованной продукции, если известно, что кривая спроса Р= р(у) задаётся уравнением Р=2; норма инвестиций M=0,5; норма акселерации ; У(0)=0,5 – начальное условие.

3. При условиях предыдущей задачи 2 найти эластичность объема продаж относительно цены Р и определить условия, при которых продажи продукции являются эластичными и неэластичными.

Горин Павел/ автор статьи

Павел Горин — психолог и автор популярных статей о внутреннем мире человека. Он работает с темами самооценки, отношений и личного роста. Его экспертность основана на практическом консультировании и современных психологических подходах.

Понравилась статья? Поделиться с друзьями:
psihologiya-otnosheniy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: