Что такое сумма квадратов

Формулы сокращенного умножения

У истоков создания этого проекта лежит небольшая формула, которую я заметил в этом году. Если говорить точнее, это закономерность между числами. Я долго интересовался тем, что это за формула, но разные люди предполагали абсолютно разные варианты. Поскольку, безусловно, эта формула связана с квадратами чисел и я не знаю, придумал ли ее кто-то до меня, я решил сделать презентацию, в которой помимо этой закономерности рассказывалось о какой-нибудь интересной теме. Так я решил создать этот научно-исследовательский проект.

Квадрат суммы

Начнем с азов. Наверняка, каждый семиклассник (не говоря уже и о более старших школьниках) знает эту формулу. Но все же для закрепления материала стоит проверить эти знания.

Что читается, как >.

Квадрат разности

А вот на этой теме уже начинают встречаться сложности. К сожалению, не все ученики помнят эту формулу, некоторые путаются, но я надеюсь, что никто из нашего класса не ошибется ни в записи, ни в формулировке.

А читается эта формула: >.

Немного из истории. Вот мы и вспомнили первые две формулы сокращенного умножения. Как оказалось, ничего страшного в этом нет!

А задавались ли вы когда-нибудь вопросом, кто же все-таки придумал эти две формулы: квадрат суммы и квадрат разности? Некоторые источники говорят, что это был древнегреческий математик Евклид. Это было действительно уникальное открытие, поскольку мы знаем, что он жил еще в III веке до нашей эры.

Разность квадратов

Вот мы и дошли до последней формулы, связанной с квадратами чисел. В следующем слайде я докажу, почему она последняя. А пока что попытаемся вспомнить разность квадратов.

При этом следует помнить, что множители можно менять местами.

Разность квадратов двух чисел равна произведению суммы и разности этих чисел.

Сумма квадратов

Но в школьном курсе не дается понятие этой формулы сокращенного умножения, потому что ее попросту не существует. А сейчас мы рассмотрим, почему.

  • Квадрат суммы и квадрат разности можно разложить не только по формуле, данной ранее. Их можно представить таким видом: (x+y)²=(x+y)(x+y) и (x-y)²=(x-y)(x-y).
  • На основании того, что первые три формулы сокращенного умножения можно представить в виде произведения из двух многочленов, можно утверждать, что и сумму квадратов можно представить, как произведение из двух многочленов.
  • Но все возможные комбинации уже использованы. Квадрат суммы — это произведение сумм этих чисел, квадрат разности — произведение разностей этих чисел, а разность квадратов — произведение суммы и разности. Значит, сумму квадратов нельзя представить в виде формулы сокращенного умножения.

Неполный квадрат

Для дальнейшего повторения формул сокращенного умножения мы должны также вспомнить еще один термин. Мы рассмотрели понятия квадрат суммы и квадрат разности ((x+y)²=x²+2xy+y² и (x-y)²=x²-2xy+y²). Так что же тогда такое неполный квадрат? Нам понадобятся неполный квадрат суммы и неполный квадрат разности. Неполный квадрат суммы — это x²+xy+y² (сумма квадрата первого числа, произведения первого числа на второе и второго числа), а неполный квадрат разности — это x²-xy+y² (квадрат первого числа минус произведение первого числа на второе плюс квадрат второго числа). Как мы видим, в обоих случаях вместо удвоенного произведения первого числа на второе появляется произведение первого числа на второе.

Сумма кубов

Вот мы и приступили к тому моменту, который, как я подозреваю, мало кто помнит. Время проверить знания.

Сумма кубов двух чисел равна произведению этих чисел и неполного квадрата их суммы.

Разность кубов

И сейчас мы вспомним еще одну, очень похожую на предыдущую, формулу.

Куб суммы

Эту формулу и следующую за ней немного сложно запомнить, но я все же надеюсь, что в нашем классе есть ученики с хорошей памятью, что мы сейчас и проверим.

Куб суммы двух чисел равен сумме квадрата первого числа, утроенного произведения квадрата первого числа на второе, утроенного произведения первого числа на квадрат второго и куба второго числа.

Куб разности

И вот наконец мы дошли до последней формулы, изучаемой в седьмом классе.

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа.

Формулы сокращенного умножения: таблица, примеры использования

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a — b 2 = a 2 — 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3
  5. формула разности квадратов: a 2 — b 2 = a — b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 — a b + b 2
  7. формула разности кубов: a 3 — b 3 = a — b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Формулы сокращенного умножения. Таблица

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Формулы сокращенного умножения. Таблица

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . + C n n — 1 · a · b n — 1 + C n n · b n

Здесь C n k — биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · ( n — k ) ! = n ( n — 1 ) ( n — 2 ) . . ( n — ( k — 1 ) ) k !

Как видим, ФСУ для квадрата и куба разности и суммы — это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n — 1 a n

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится — формула формула разности n-ых степеней двух слагаемых.

a n — b n = a — b a n — 1 + a n — 2 b + a n — 3 b 2 + . . + a 2 b n — 2 + b n — 1

Эту формулу обычно разделяют на две формулы — соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m — b 2 m = a 2 — b 2 a 2 m — 2 + a 2 m — 4 b 2 + a 2 m — 6 b 4 + . . + b 2 m — 2

Для нечетных показателей 2m+1:

a 2 m + 1 — b 2 m + 1 = a 2 — b 2 a 2 m + a 2 m — 1 b + a 2 m — 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на — b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a — b 2 = a 2 — 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 — b 2 = a — b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 — a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a — b 2 = a 2 — 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a — b 2 = a — b a — b .

a — b a — b = a 2 — a b — b a + b 2 = a 2 — 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения — быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Упростим выражение 9 y — ( 1 + 3 y ) 2 .

Применим формулу суммы квадратов и получим:

9 y — ( 1 + 3 y ) 2 = 9 y — ( 1 + 6 y + 9 y 2 ) = 9 y — 1 — 6 y — 9 y 2 = 3 y — 1 — 9 y 2

Сократим дробь 8 x 3 — z 6 4 x 2 — z 4 .

Замечаем, что выражение в числителе — разность кубов, а в знаменателе — разность квадратов.

8 x 3 — z 6 4 x 2 — z 4 = 2 x — z ( 4 x 2 + 2 x z + z 4 ) 2 x — z 2 x + z .

Сокращаем и получаем:

8 x 3 — z 6 4 x 2 — z 4 = ( 4 x 2 + 2 x z + z 4 ) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное — уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 — 1 ; 79 2 = 80 — 1 2 = 6400 — 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент — выделение квадрата двучлена. Выражение 4 x 2 + 4 x — 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 — 4 = 2 x + 1 2 — 4 . Такие преобразования широко используются в интегрировании.

Сумма квадратов

Сумма квадратов – это статистический метод, используемый в регрессионном анализе для определения разброса точек данных. В регрессионном анализе цель состоит в том, чтобы определить, насколько хорошо ряд данных может быть адаптирован к функции, которая может помочь объяснить, как был создан ряд данных. Сумма квадратов используется как математический способ найти функцию, которая лучше всего соответствует (меньше всего отличается) от данных.

Формула суммы квадратов:

Сумма квадратов также известна как вариация.

Что вам говорит сумма квадратов?

Сумма квадратов – это мера отклонения от среднего. В статистике среднее значение представляет собой среднее значение набора чисел и является наиболее часто используемой мерой центральной тенденции . Среднее арифметическое вычисляется просто путем суммирования значений в наборе данных и деления на количество значений.

Допустим, цена закрытия Microsoft (MSFT) за последние пять дней составляла 74,01, 74,77, 73,94, 73,61 и 73,40 в долларах США. Сумма общих цен составляет 369,73 доллара, а средняя цена учебника, таким образом, будет 369,73 доллара / 5 = 73,95 доллара.

Но знать среднее значение набора измерений не всегда достаточно. Иногда полезно знать, насколько вариативен набор измерений. Насколько далеко отдельные значения отстоят от среднего, может дать некоторое представление о том, насколько наблюдения или значения соответствуют создаваемой регрессионной модели .

Например, если аналитик хотел знать, движется ли цена акций MSFT вместе с ценой Apple (AAPL), он может перечислить набор наблюдений за процессом обеих акций за определенный период, скажем 1, 2. , или 10 лет и создайте линейную модель с записью каждого из наблюдений или измерений. Если связь между обеими переменными (т. Е. Ценой AAPL и ценой MSFT) не является прямой линией, то в наборе данных есть вариации, которые необходимо тщательно изучить.

В статистике говорят, что если линия в созданной линейной модели не проходит через все измерения стоимости, то некоторая изменчивость, которая наблюдалась в ценах акций, необъяснима. Сумма квадратов используется для расчета, существует ли линейная связь между двумя переменными, а любая необъяснимая изменчивость называется остаточной суммой квадратов .

Сумма квадратов – это сумма квадратов вариации, где вариация определяется как разброс между каждым отдельным значением и средним значением. Чтобы определить сумму квадратов, расстояние между каждой точкой данных и линией наилучшего соответствия возводится в квадрат, а затем суммируется. Линия наилучшего соответствия минимизирует это значение.

Как посчитать сумму квадратов

Теперь вы можете понять, почему измерение называется суммой квадратов отклонений или для краткости суммой квадратов. Используя наш приведенный выше пример MSFT, сумму квадратов можно рассчитать как:

  • СС = (74.01 – 73.95) 2 + (74.77 – 73.95) 2 + (73.94 – 73.95) 2 + (73,61 – 73,95) 2 + (73.40 – 73.95) 2
  • SS = (0,06) 2 + (0,82) 2 + (-0,01) 2 + (-0,34) 2 + (-0,55) 2
  • СС = 1.0942

Добавление только суммы отклонений без возведения в квадрат приведет к числу, равному или близкому к нулю, поскольку отрицательные отклонения почти полностью компенсируют положительные отклонения. Чтобы получить более реалистичное число, необходимо возвести сумму отклонений в квадрат. Сумма квадратов всегда будет положительным числом, потому что квадрат любого числа, положительного или отрицательного, всегда положительный.

Пример использования суммы квадратов

Основываясь на результатах расчета MSFT, большая сумма квадратов указывает на то, что большинство значений дальше от среднего, и, следовательно, есть большая изменчивость в данных. Низкая сумма квадратов указывает на низкую изменчивость набора наблюдений.

В приведенном выше примере 1.0942 показывает, что колебания цены акций MSFT за последние пять дней очень низки, и инвесторы, желающие инвестировать в акции, характеризующиеся стабильностью цен и низкой волатильностью, могут выбрать MSFT.

Ключевые моменты

  • Сумма квадратов измеряет отклонение точек данных от среднего значения.
  • Более высокий результат суммы квадратов указывает на большую степень изменчивости в наборе данных, в то время как более низкий результат указывает на то, что данные не сильно отличаются от среднего значения.

Ограничения использования суммы квадратов

Принятие инвестиционного решения о том, какие акции покупать, требует гораздо большего количества наблюдений, чем перечисленные здесь. Аналитику, возможно, придется работать с данными за годы, чтобы с большей уверенностью узнать, насколько высока или низка изменчивость актива. По мере того, как в набор добавляется больше точек данных, сумма квадратов становится больше, так как значения будут более разбросанными.

Наиболее широко используемые измерения вариации – это стандартное отклонение и дисперсия . Однако для вычисления любого из двух показателей сначала необходимо вычислить сумму квадратов. Дисперсия – это среднее значение суммы квадратов (т. Е. Суммы квадратов, деленной на количество наблюдений). Стандартное отклонение – это квадратный корень из дисперсии.

Существует два метода регрессионного анализа, в которых используется сумма квадратов: линейный метод наименьших квадратов и нелинейный метод наименьших квадратов. Метод наименьших квадратов относится к тому факту, что функция регрессии минимизирует сумму квадратов отклонения от фактических точек данных. Таким образом можно нарисовать функцию, которая статистически лучше всего подходит для данных. Обратите внимание, что функция регрессии может быть линейной (прямая линия) или нелинейной (кривая линия).

Формулы сокращенного умножения.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей, решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у) 2 = х 2 – 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х — у) 3 = х 3 – 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2 ) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2 ) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономе рностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник, заключенный между отрезками a и b”.

И так Евклид взял квадрат со стороной (a + b):

Формулы сокращенного умножения.

Формулы сокращенного умножения.

С другой стороны, этот же квадрат он представить иначе, разделив сторону на а и b:

Тогда площадь квадрата можно представить в виде суммы площадей:

Формулы сокращенного умножения.

И так как квадраты были одинаковы, то их площади равны, и это значит:

Формулы сокращенного умножения.

Таким образом, была доказана геометрически формула квадрата суммы.

Формулы сокращенного умножения с примерами

Формулы сокращенного умножения с примерами 7 класс

ФСУ используются при упрощении алгебраических выражений (в том числе в работе с алгебраическими дробями ), решении уравнений и неравенств , при разложении на множители и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.

Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: ((a+b)^2). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, ((a+b)^2=(a+b)(a+b)). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь , и привести подобные слагаемые. Получаем:

(a+b)^2=

Квадрат суммы: ((a+b)^2=a^2+2ab+b^2)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример. Раскрыть скобки: ((x+5)^2)
Решение:

раскрытие скобок по формуле и без формулы

Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве (a) и (b) могут быть любые выражения – принцип остается тем же. Например:

несколько примеров на квадрат суммы

Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду .

Пример. Преобразуйте выражение ((1+5x)^2-12x-1 ) в многочлен стандартного вида.

Раскроем скобки, воспользовавшись формулой квадрата суммы.

…и приведем подобные слагаемые.

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример. Вычислите значение выражения ((368)^2+2·368·132+(132)^2) без калькулятора.

Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: (a^2+2ab+b^2=(a+b)^2)

Вот теперь вычислять гораздо приятнее!

Квадрат разности

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для ((a-b)^2):

вывод формулы квадрата разности

В более краткой записи имеем:

Квадрат разности: ((a-b)^2=a^2-2ab+b^2)

Применяется она также, как и предыдущая.

Пример. Упростите выражение ((2a-3)^2-4(a^2-a)) и найдите его значение при (a=frac).

Если сразу подставить дробь в выражение – придется возводить ее в квадрат и вообще делать объемные вычисления. Попробуем сначала упростить выражение, воспользовавшись формулой выше и раскрыв скобки .

Теперь приведем подобные слагаемые.

Вот теперь подставляем и наслаждаемся простотой вычислений.

Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

вывод формулы разности квадратов

Разность квадратов (a^2-b^2=(a+b)(a-b))

Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями .

Пример. Сократите дробь (frac) .

Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус!
Попробуем воспользоваться формулой.

Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.

Пример.Разложите на множители (25x^4-m^ t^6).
Решение:

Воспользуемся формулами степеней: ((a^n )^m=a^) и (a^n b^n=(ab)^n).

Ну, а теперь пользуемся формулой (a^2-b^2=(a+b)(a-b)), где (a=5x^2) и (b=m^5 t^3).

Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

Пример (повышенной сложности!).Сократите дробь (frac) .
Решение:

На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).

Теперь немного преобразуем слагаемые в скобке:
(4xy) запишем как (2·x·2y),
а (4y^2) как ((2y)^2).

Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой (a=x), (b=2y). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как (3) в квадрате.

Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой (a=(x-2y)), (b=3). Раскладываем по ней к произведению двух скобок.

Формулы сокращенного умножения

Для того что бы упростить алгебраические многочлены, существуют формулы сокращенного умножения. Их не так уж и много и они легко запоминаются, а запомнить их нужно. Обозначения которые используются в формулах, могут принимать любой вид (число или многочлен).

Формулы сокращенного умножения

Первая формула сокращенного умножения называется разность квадратов. Она заключается в том что из квадрата одного числа отнимается квадрат второго числа равен величине разности данных чисел, а также их произведению.

а 2 — b 2 = (а — b)(a + b)

Разберем для наглядности:

22 2 — 4 2 = (22-4)(22+4)=18 * 26 = 468
9а 2 — 4b 2 c 2 = (3a — 2bc)(3a + 2bc)

Вторая формула о сумме квадратов. Звучит она как, сумма двух величин в квадрате равняется квадрату первой величины к ней прибавляется двойное произведение первой величины умноженное на вторую, к ним прибавляется квадрат второй величины.

(а + b) 2 = a 2 +2ab + b 2

Благодаря данной формуле, становится намного проще вычислять квадрат от большого числа, без использования вычислительной техники.

Так к примеру: квадрат от 112 будет равен
1) В начале разберем 112 на числа квадраты которых нам знакомы
112 = 100 + 12
2) Вписываем полученное в скобки возведенные в квадрат
112 2 = (100+12) 2
3) Применяя формулу, получаем:

Третья формула это квадрат разности. Которая гласит о том, что две вычитаемые друг друга величины в квадрате равняются, тому что, от первой величины в квадрате отнимаем двойное произведение первой величины умноженное на вторую, прибавляя к ним квадрат второй величины.

(а +b) 2 = а 2 — 2аb + b 2

где (а — b) 2 равняется (b — а) 2 . В доказательство чему, (а-b) 2 = а 2 -2аb+b 2 = b 2 -2аb + а 2 = (b-а) 2

Четвертая формула сокращенного умножения называется куб суммы. Которая звучит как: две слагаемые величины в кубе равны кубу 1 величины прибавляется тройное произведение 1 величины в квадрате умноженное на 2-ую величину, к ним прибавляется тройное произведение 1 величины умноженной на квадрат 2 величины, плюс вторая величина в кубе.

(а+b) 3 = а 3 + 3а 2 b + 3аb 2 + b 3

Пятая, как вы уже поняли называется куб разности. Которая находит разности между величинами, как от первого обозначения в кубе отнимаем тройное произведение первого обозначения в квадрате умноженное на второе, к ним прибавляется тройное произведение первого обозначения умноженной на квадрат второго обозначения, минус второе обозначение в кубе.

(а-b) 3 = а 3 — 3а 2 b + 3аb 2 — b 3

Шестая называется — сумма кубов. Сумма кубов равняется произведению двух слагаемых величин, умноженных на неполный квадрат разности, так как в середине нет удвоенного значения.

а 3 + b 3 = (а+b)(а 2 -аb+b 2 )

По другому можно сказать сумму кубов можно назвать произведение в двух скобках.

Седьмая и заключительная, называется разность кубов (ее легко перепутать с формулой куба разности, но это разные вещи). Разность кубов равняется произведению от разности двух величин, умноженных на неполный квадрат суммы, так как в середине нет удвоенного значения.

а 3 — b 3 = (а-b)(а 2 +аb+b 2 )

И так формул сокращенного умножения всего 7, они похожи друг на друга и легко запоминаются, единственно важно не путаться в знаках. Они так же рассчитаны на то, что их можно использовать в обратном порядке и в учебниках собрано довольно много таких заданий. Будьте внимательны и все у вас получится.

Если у вас появились вопросы по формулам, обязательно пишите их в комментариях. Будем рады ответить вам!

Если Вы находитесь в декретном отпуске, но хотите зарабатывать деньги. Просто перейдите по ссылке Интернет бизнес с Орифлейм . Там все очень подробно написано и показано. Будет интересно!

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Теорема Пифагора

Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Доказательство

Доказательство теоремы Пифагора, используя алгебру

треугольник пифагора большой квадрат из 4 цветных треугольников, внутри под наклоном другой белый квадрат

Нужно доказать, что c² = a² + b²:

Это квадрат, в котором есть 4 одинаковых треугольника abc:

  1. Каждая сторона этого квадрата имеет длину a + b, значит его общая площадь: A = (a + b) (a + b);
  2. Площадь наименьшего квадрата (который находится внутри, под наклоном): c²;
  3. Площадь каждого из треугольников: ab/2. Значит площадь всех четырёх вместе: 4ab/2 = 2ab;
  4. Сумма наименьшего квадрата и треугольников: A = c² + 2ab;
  5. Площадь большого квадрата (A = (a + b) (a + b)) равна сумме наименьшего квадрата со всеми треугольниками. Значит:

(a + b) (a + b) = c² + 2ab

a² + 2ab + b² = c² + 2ab

Что и требовалось доказать.

«Пифагоровы штаны на все стороны равны»

Это шуточная фраза, которая именует ещё одно доказательство теоремы Пифагора

Пифагоровы штаны - треугольник и к нему подрисованы квадраты, длина стороны каждого квадрата равна стороне треугольника

На этой фигуре c — гипотенуза, a и b — катеты.

Проведём перпендикулярную линию к гипотенузе (c):

Пифагоровы штаны - треугольник и к нему подрисованы квадраты, длина стороны каждого квадрата равна стороне треугольника, перпендикуляр в прямом угле

Таким образом появились два новых прямоугольных треугольника (A и B) внутри большого (исходный треугольник С).

  1. Общая площадь исходного треугольника (С) равна сумме двух новых, маленьких (A и B): С = А + B;
  2. Делим «Пифагоровы штаны» на 3 похожие фигуры:

3 домика Пифагоровых штанов: треугольник - крыша, дом - квадрат

Что и требовалось доказать.

Примеры

Задача 1

прямоугольный треугольник: один катет-3, другой катет - 4, гипотенуза-х?

На рисунке видно, что длина одной стороны прямоугольного треугольника составляет 3 см, длина другой — 4 см. Найдите длину гипотенузы.

Подставить известные значения

Ответ: длина гипотенузы равна 5.

Задача 2

прямоугольный треугольник: один катет-12, другой катет - x, гипотенуза-13

Длина одной стороны прямоугольного треугольника составляет 12 см, длина гипотенузы 13 см. Найдите длину другой стороны треугольника.

Подставить известные значения

Ответ: длина другой стороны треугольника равна 5.

Следствия из теоремы Пифагора

Это основные следствия теоремы:

  1. В прямоугольном треугольнике гипотенуза всегда больше любого из двух катетов.
  2. Если применить формулу теоремы Пифагора (c² = a² + b²) и равенство будет верным, (т.е. если квадрат одной стороны равен сумме квадратов двух других сторон), то треугольник прямоугольный.
  3. Из формулы теоремы Пифагора также можно посчитать любой из катетов: a² = c² − b² либо b² = c² − a².
  4. Любой косинус (cos) острого угла будет меньше 1.

Кто придумал теорему Пифагора

Концепция теоремы Пифагора была известна ещё в древнем Египте и Вавилоне (около 1900 г. до н. э.). Связь между катетами и гипотенузой в прямоугольном треугольнике была изображена на вавилонской глиняной табличке (которой около 4000 лет). Однако это знание стало широко использоваться лишь после того, как сам Пифагор заявил о нём (он жил в 6 веке до н. э.).

Горин Павел/ автор статьи

Павел Горин — психолог и автор популярных статей о внутреннем мире человека. Он работает с темами самооценки, отношений и личного роста. Его экспертность основана на практическом консультировании и современных психологических подходах.

Понравилась статья? Поделиться с друзьями:
psihologiya-otnosheniy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: