Что такое суммарная радиация

Что такое Суммарная радиация и от чего она зависит?

Суммарная солнечная радиация ( Q ) представляет собой совокупность прямой солнечной радиации, поступающей непосредственно от солнца, и рассеянной радиации (лучистой энергии, рассеянной облаками и самой атмосферой). . Увеличение содержания аэрозолей приводит к снижению прямой радиации и увеличению рассеянной.

Что означает суммарная радиация?

Большое значение для климатообразования имеет суммарная радиация – общий приход прямой и рассеянной радиации на горизонтальную поверхность. Некоторое уменьшение годовой суммарной радиации прослеживается в экваториальных широтах, что связано с увеличением повторяемости пасмурного неба над экватором. .

Что такое Что такое солнечная радиация?

Солнечная радиация — поступающая на Землю энергия солнечного излучения в виде потока электромагнитных волн. Солнце распространяет вокруг себя мощное электромагнитное излучение.

Как найти суммарную солнечную радиацию?

Суммарная солнечная радиация это сумма прямой солнечной радиации (когда лучи солнца непосредственно падают на поверхность Земли) и рассеянной солнечной радиации (когда на Землю попадает радиация, рассеянная в атмосфере). Суммарная солнечная радиация измеряется в килокалориях на 1см² поверхности.

Что такое поглощенная солнечная радиация?

Часть суммарной солнечной радиации, поглощенная земной поверхностью или атмосферой.

Когда в России суммарная радиация максимальная?

Максимальное количество солнечной радиации поступает на поверхность в мае-июле при наибольших высотах солнца и продолжительности дня.

Какая суммарная радиация в Мурманске?

В портовом городе Мурманске показатели суммарной солнечной радиации равны 80 ккал/см2 в год; В столице республики Саха, городе Якутске, солнце отдаёт его жителям 90 килокалорий на сантиметр квадратный в год.

Как солнечная радиация влияет на климат?

Влияние солнечной радиации на климат

Солнечной радиации подвергается дневная сторона поверхности Земли. . Солнечная радиация полностью не блокируется облачностью, и частично достигает поверхности Земли при любой погоде в дневное время за счёт прозрачности облаков для тепловой компоненты спектра солнечной радиации.

Почему солнечная радиация подразделяется на прямую рассеянную и суммарную?

Солнечный свет создает освещенность, которая характеризуется суммарным действием прямой, рассеянной отраженной радиации. При прочих равных условиях освещенность возрастает с увеличением отраженной радиации. . Солнечную радиацию подразделяют на прямую, рассеянную и суммарную.

Как солнечная радиация влияет на живые организмы?

Инфракрасные, или тепловые, лучи несут основное количество тепловой энергии. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.).

Как изменяется количество солнечной радиации?

На территории России количество солнечной радиации изменяется с севера (60 ккал/см² год) на юг (120 ккал/см² год). Максимальное количество рассматриваемой радиации поступает в мае–июле, когда высота солнца наибольшая, а также больше продолжительность дня.

Какую радиацию излучает солнце?

Солнечная радиация или ионизирующее излучение солнца Солнце – источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия.

Какие широты земле получают за год максимальное количество суммарной солнечной радиации?

Показатели суммарной солнечной радиации максимальны в тропических широтах, где они могут достигать 200-220 ккал/см2/год, а минимальны полярных широтах – 60 и менее ккал/см2/год.

Чем отличается солнечная радиация от альбедо?

Солнечная радиация, поступающая к поверхности Земли, поглощается ею не полностью. . Отражательная способность поверхности Земли зависит от рода тел, их физических свойств, цвета и состояния. Отношение отраженной радиации к суммарной радиации Солнца и атмосферы называется альбедо.

Что такое солнечная радиация 8 класс?

Солнечная радиация – это вся энергия Солнца, поступающая на Землю. Считается, что поступление тепла от Солнца на 1 га Земли равнозначно сжиганию почти 143 тыс. т угля.

Прямая, рассеянная и суммарная радиация

Солнце является источником корпускуляр­ного и электромагнитного излучений. Корпус­кулярное излучение не проникает в атмосфе­ру ниже 90 км, тогда как электромагнитное достигает земной поверхности. В метеороло­гии его называют солнечной радиацией или просто радиацией. Она составляет одну двух­миллиардную долю от всей энергии Солнца и проходит путь от Солнца до Земли за 8,3 мин. Солнечная радиация — источник энергии поч­ти всех процессов, совершающихся в атмо­сфере и на земной поверхности. Она в основ­ном коротковолновая и состоит из невидимой ультрафиолетовой радиации — 9 %, видимой световой — 47 % и невидимой инфракрасной — 44 %. Поскольку почти половина солнечной радиации представляет собой видимый свет, Солнце служит источником не только тепла, но и света — тоже необходимого условия для жизни на Земле.

Радиацию, приходящую к Земле непосред­ственно от солнечного диска, называют пря­мой солнечной радиацией. Ввиду того что расстояние от Солнца до Земли велико, а Зем­ля мала, радиация падает на любую ее по­верхность в виде пучка параллельных лучей.

Солнечная радиация обладает определен­ной плотностью потока на единицу площади в единицу времени. За единицу измерения ин­тенсивности радиации принято количество энергии (в джоулях или калориях 1 ), которые получает 1 см 2 поверхности в минуту при пер­пендикулярном падении солнечных лучей. На верхней границе атмосферы при среднем рас­стоянии от Земли до Солнца она составляет 8,3 Дж/см 2 в мин, или 1,98 кал/см 2 в мин. Эта величина принята в качестве международ­ного стандарта и называется солнечной по­стоянной (S0). Ее периодические колебания в течение года незначительны (+ 3,3 %) и обус­ловлены изменением расстояния от Земли до

1 1 кал=4,19 Дж, 1 ккал=41,9 МДж.

2 Полуденная высота Солнца зависит от географиче­ской широты и склонения Солнца.

Солнца. Непериодические колебания вызваны различной излучательной способностью Солн­ца. Климат на верхней границе атмосферы на­зывают радиационным или солярным. Он рас­считывается теоретически, исходя из угла на­клона солнечных лучей на горизонтальную поверхность.

В общих чертах солярный климат находит отражение на земной поверхности. В то же время реальная радиация и температура на Земле существенно отличаются от солярного климата за счет различных земных факторов. Главный из них — ослабление радиации в ат­мосфере за счет отражения, поглощения и рассеяния, а также в результате отражения радиации от земной поверхности.

На верхнюю границу атмосферы вся ради­ация приходит в виде прямой радиации. По данным С. П. Хромова и М. А. Петросянца, 21 % ее отражается от облаков и воздуха на­зад в космическое пространство. Остальная радиация поступает в атмосферу, где прямая радиация частично поглощается и рассеивает­ся. Оставшаяся прямая радиация (24 %) до­стигает земной поверхности, однако при этом ослабляется. Закономерности ослабления ее в атмосфере выражаются законом Бугера: S=S 0 ·p m (Дж, или кал/см 2 , в мин), где S — количество прямой солнечной радиации, дос­тигшей земной поверхности, на единицу пло­щади (см 2 ), расположенной перпендикулярно солнечным лучам, S0 — солнечная постоян­ная, р — коэффициент прозрачности в долях от единицы, показывающий, какая часть ра­диации достигала земной поверхности, т — длина пути луча в атмосфере.

Реально же солнечные лучи падают на зем­ную поверхность и на любой другой уровень атмосферы под углом менее 90°. Поток пря­мой солнечной радиации на горизонтальную поверхность называют инсоляцией (5,). Она вычисляется по формуле S1=S·sin h (Дж, или кал/см 2 , в мин), где h — высота Солнца 2 . На единицу горизонтальной поверхности, ес­тественно, приходится меньшее количество

энергии, чем на единицу площади, располо­женной перпендикулярно солнечным лучам (рис. 22).

В атмосфере поглощается около 23 % и рассеивается около 32 % прямой солнечной радиации, входящей в атмосферу, причем 26 % рассеянной радиации приходит затем к земной поверхности, а 6 % уходит в Космос.

Солнечная радиация подвергается в атмо­сфере не только количественным, но и каче­ственным изменениям, поскольку газы возду­ха и аэрозоли поглощают и рассеивают сол­нечные лучи избирательно. Основными поглотителями радиации являются водяной пар, облака и аэрозоли, а также озон, кото­рый сильно поглощает ультрафиолетовую ра­диацию. В рассеянии радиации участвуют мо­лекулы разных газов и аэрозоли. Рассеяние — отклонение световых лучей во все стороны от первоначального направления, так что рассе­янная радиация приходит к земной поверх­ности не от солнечного диска, а от всего не­бесного свода. Рассеяние зависит от длины волн: по закону Рэлея, чем короче длина вол­ны, тем интенсивнее рассеяние. Поэтому боль­ше всех остальных рассеиваются ультрафио­летовые лучи, а из видимых — фиолетовые и синие. Отсюда голубой цвет воздуха и соот­ветственно неба в ясную погоду. Прямая же радиация оказывается в основном желтой, по­этому солнечный диск видится желтоватым. При восходе и заходе Солнца, когда путь луча в атмосфере длиннее и рассеяние боль­ше, поверхности достигают только красные лу­чи, отчего Солнце кажется красным. Рассеян­ная радиация обусловливает свет днем при пасмурной погоде и в тени при ясной погоде, с нею связано явление сумерек и белых но­чей. На Луне, где нет атмосферы и соответ­ственно рассеянной радиации, предметы, по­падающие в тень, становятся полностью не­видимыми.

С высотой, по мере уменьшения плотнос­ти воздуха и соответственно количества рас­сеивающих частиц, цвет неба становится тем­нее, переходит сначала в густо-синий, потом в сине-фиолетовый, что хорошо видно в го­рах и отражено на гималайских пейзажах Н. Рериха. В стратосфере цвет воздуха чер­но-фиолетовый. По свидетельству космонав­тов, на высоте 300 км цвет неба черный.

При наличии в атмосфере крупных аэро­золей, капель и кристаллов наблюдается уже не рассеяние, но диффузное отражение, а по­скольку диффузно отраженная радиация пред­ставляет собой белый свет, то цвет неба ста­новится белесым.

Прямая и рассеянная солнечная радиация имеют определенный суточный и годовой ход, который зависит прежде всего от высоты Солн-

Рис. 22. Приток солнечной радиации на поверхность АВ, перпендикулярную к лучам, и на горизонтальную поверх­ность АС (по С. П. Хромову)

ца над горизонтом, от прозрачности воздуха и облачности.

Поток прямой радиации в течение дня от восхода Солнца до полудня нарастает и потом убывает до захода Солнца в связи с измене­нием высоты Солнца и пути луча в атмосфе­ре. Однако, поскольку около полудня умень­шается прозрачность атмосферы за счет уве­личения водяного пара в воздухе и пыли и возрастает конвективная облачность, макси­мальные значения радиации смещены на пред-полуденные часы. Такая закономерность при­суща экваториально-тропическим широтам весь год, умеренным широтам летом. Зимой в умеренных широтах максимум радиации при­ходится на полдень.

Годовой ход среднемесячных значений пря­мой радиации зависит от широты. На эквато­ре годовой ход прямой радиации имеет вид двойной волны: максимумы в периоды весен­него и осеннего равноденствия, минимумы в периоды летнего и зимнего солнцестояния. В умеренных широтах максимальные значения прямой радиации приходятся на весенние (ап­рель в северном полушарии), а не на летние месяцы, так как воздух в это время прозрач­нее из-за меньшего содержания водяного па­ра и пыли, а также незначительной облачно­сти. Минимум радиации наблюдается в декаб­ре, когда наименьшая высота Солнца, короткий световой день, и это самый пасмурный месяц в году.

Суточный и годовой ход рассеянной ра­диации определяется изменением высоты Солнца над горизонтом и продолжительностью дня, а также прозрачностью атмосферы. Мак­симум рассеянной радиации в течение суток наблюдается днем при возрастании радиации в целом, хотя доля ее в утренние и вечерние часы больше, чем прямой, а днем, наоборот, прямая радиация преобладает над рассеянной. Годовой ход рассеянной радиации на экваторе в общем повторяет ход прямой. В остальных широтах она больше летом, чем зимой, из-за увеличения летом общего притока солнечной радиации.

Соотношение между прямой и рассеянной радиацией меняется в зависимости от высо­ты Солнца, прозрачности атмосферы и облач­ности.

Пропорции между прямой и рассеянной радиацией на разных широтах неодинаковы. В полярных и субполярных областях рассеян­ная радиация составляет 70 % от всего пото­ка радиации. На ее величину, кроме низкого положения Солнца и облачности, влияет так­же многократное отражение солнечной ради­ации от снежной поверхности. Начиная с уме­ренных широт и почти до экватора, прямая радиация преобладает над рассеянной. Осо­бенно велико ее абсолютное и относительное значение во внутриконтинентальных тропиче­ских пустынях (Сахара, Аравия), отличающих­ся минимальной облачностью и прозрачным сухим воздухом. Вдоль экватора рассеянная радиация вновь доминирует над прямой в свя­зи с большой влажностью воздуха и наличи­ем кучевых облаков, хорошо рассеивающих солнечную радиацию.

С возрастанием высоты места над уров­нем моря значительно увеличиваются абсолют-Рис. 23. Годовое количество суммарной солнечной ради­ации [МДж/(м 2 xгод)]

ная и относительная величины прямой радиа­ции и уменьшается рассеянная, так как становится тоньше слой атмосферы. На вы­соте 50—60 км поток прямой радиации при­ближается к солнечной постоянной.

Вся солнечная радиация — прямая и рассеянная, приходящая на земную поверх­ность, называется суммарной радиацией: (Q=S·sinh¤+D где Q — суммарная радиация, S — прямая, D— рассеянная, h¤ — высота Солнца над горизонтом. Суммарная радиация составляет около 50 % от солнечной радиации, приходящей на верхнюю границу атмосферы.

При безоблачном небе суммарная радиа­ция значительна и имеет суточный ход с мак­симумом около полудня и годовой ход с мак­симумом летом. Облачность уменьшает ради­ацию, поэтому летом приход ее в дополуденные часы в среднем больше, чем в послеполуден­ные. По той же причине в первую половину года она больше, чем во вторую.

В распределении суммарной радиации на земной поверхности наблюдается ряд законо­мерностей.

Главная закономерность заключается в том, что суммарная радиация распределяется зонально, убывая от экваториально-тропи-

ческих широт к полюсам в соответствии с уменьшением угла падения солнечных лучей (рис. 23). Отклонения от зонального распре­деления объясняются различной облачностью и прозрачностью атмосферы. Наибольшие го­довые величины суммарной радиации 7200 — 7500 МДж/м 2 в год (около 200 ккал/см 2 в год) приходятся на тропические широты, где малая облачность и небольшая влажность воз­духа. Во внутриконтинентальных тропических пустынях (Сахара, Аравия), где обилие пря­мой радиации и почти нет облаков, суммар­ная солнечная радиация достигает даже более 8000 МДж/м 2 в год (до 220 ккал/см 2 в год). Вблизи экватора величины суммарной радиа­ции снижаются до 5600 — 6500 МДж/м в год (140—160 ккал/см 2 в год) из-за значитель­ной облачности, большой влажности и мень­шей прозрачности воздуха. В умеренных ши­ротах суммарная радиация составляет 5000 — 3500 МДж/м 2 в год (≈ 120 — 80 ккал/см 2 в год), в приполярных — 2500 МДж/м в год (≈60 ккал/см 2 в год). Причем в Антарктиде она в 1,5—2 раза больше, чем в Арктике, прежде всего из-за большей абсолютной вы­соты материка (более 3 км) и потому малой плотности воздуха, его сухости и прозрачнос­ти, а также малооблачной погоды. Зональ­ность суммарной радиации лучше выражена над океанами, чем над континентами.

Вторая важная закономерность суммар­ной радиации заключается в том, что мате­рики получают ее больше, чем океаны, бла­годаря меньшей (на 15—30 %) облачности над

континентами. Исключение составляют лишь приэкваториальные широты, поскольку днем над океаном конвективная облачность мень­ше, чем над сушей.

Третья особенность состоит в том, что в северном, более материковом полушарии суммарная радиация в целом больше, не­жели в южном океаническом.

В июне наибольшие месячные суммы сол­нечной радиации получает северное полуша­рие, особенно внутриконтинентальные тропи­ческие и субтропические области. В умерен­ных и полярных широтах количество радиации по широтам изменяется незначительно, так как уменьшение угла падения лучей компенсиру­ется продолжительностью солнечного сияния, вплоть до полярного дня за Северным поляр­ным кругом. В южном полушарии с увеличе­нием широты радиация быстро убывает и за Южным полярным кругом равна нулю.

В декабре южное полушарие получает боль­ше радиации, чем северное. В это время наи­большие месячные суммы солнечного тепла приходятся на пустыни Австралии и Калаха­ри; далее в умеренных широтах радиация по­степенно уменьшается, но в Антарктиде вновь растет и достигает таких же значений, как в тропиках. В северном полушарии с увеличе­нием широты она быстро убывает и за Се­верным полярным кругом отсутствует.

В целом наибольшая годовая амплитуда суммарной радиации наблюдается за полярны­ми кругами, особенно в Антарктиде, наимень­шая — в экваториальной зоне.

Экология СПРАВОЧНИК

РАДИАЦИЯ [от лат. radiatio — сияние, блеск] — излучение (атомных частиц или электромагнитных волн), идущее от к.-л. источника (солнечная Р., ионизирующая Р., проникающая Р.). РАДИАЦИЯ ОТРАЖЕННАЯ — часть суммарной солнечной радиации, теряемой земной поверхностью в результате отражения. См. Альбедо. РАДИАЦИЯ ПРОНИКАЮЩАЯ — гамма-излучение и поток нейтронов, обладающие большой проникающей способностью.[ . ]

Суммарная радиация — общий приход солнечной радиации на горизонтальную поверхность. Годовая величина поглощенной радиации в Рос-товской области увеличивается с севера на юг от 86 до 90 ккал/см .[ . ]

Суммарный эффект рассеяния и поглощения радиации атмосферными аэрозолями. При крупных аэрозолях (пыль, продукты конденсации и сгорания), содержание которых быстро убывает с высотой, А. О. не зависит от длины волны. При рассеянии мельчайшими аэрозолями (соизмеримыми с длинами волн света), постоянно присутствующими в тропосфере, рассеяние зависит от длины волны, может достигать степени релеевского рассеяния и имеет максимум в области 375—420 нм. А. О. изучается с помощью спектрофотометрических измерений горизонтальной прозрачности атмосферы. Часть общего ослабления радиации, зависящую от аэрозолей, называют аэрозольной составляющей.[ . ]

Часть суммарной солнечной радиации, поглощенная земной поверхностью. Годовые суммы П. Р. изменяются от 40 ккал вблизи полярного круга до 100 ккал на Средиземноморье и в Средней Азии. Максимальные суммы П. Р. (до 120 ккал) относятся к югу Северной Америки.[ . ]

Часть суммарной радиации, теряемая земной поверхностью в результате отражения. При определении планетарного альбедо Земли сюда же относится радиация, отраженная облаками, рассеянная вверх молекулами атмосферных газов и коллоидными частицами, взвешенными в воздухе, и вышедшая из атмосферы в мировое пространство. См, альбедо.[ . ]

Часть суммарной радиации, приходящей к земной поверхности, отражается от нее. Эта часть радиации называется отраженной коротковолновой солнечной радиацией.[ . ]

Суммарная солнечная радиация Примечание Суммарная солнечная радиация Примечание

Различают радиацию прямую, рассеянную и суммарную.[ . ]

Количество суммарной радиации (ее лучистой энергии), приходящее за единицу времени на единицу горизонтальной (земной) поверхности. Выражается в тех же единицах, что и плотность потока прямой радиации. Синонимы те же, что и для прямой солнечной радиации, с заменой слова «прямая» на слово «суммарная». См. суммарная радиация.[ . ]

В целом около 56% суммарной радиации идет на испарение воды. При конденсации влаги эта теплота выделяется и вместе с остальными 44% расходуется на нагрев воздуха, воды, земли и обусловленные этим нагревом конвективные процессы в атмосфере и гидросфере (ветры, течения). Менее 1% суммарной радиации поглощается при различных фотохимических реакциях в нижних слоях атмосферы, верхних слоях воды и в клетках растений. Главной составляющей этих фотохимических реакций является фотосинтез.[ . ]

ПЛОТНОСТЬ ПОТОКА СУММАРНОЙ (СОЛНЕЧНОЙ) РАДИАЦИИ.[ . ]

Прямая солнечная радиация, приходящаяся на горизонтальную поверхность, и рассеянная солнечная радиация вместе составляют суммарную радиацию.[ . ]

Ультрафиолетовая радиация составляет около 5—10 % суммарной радиации, достигающей поверхности Земли.[ . ]

Парниковый эффект. Стекло прозрачно для коротковолновой радиации, суммарный направленный вниз поток которой равен /. Уравновешивающий направленный вверх поток длинноволновой радиации от почвы равен и, доля е которого поглощается стеклом и нагревает его, что вызывает излучение потока В в обоих направлениях. Парниковый эффект. Стекло прозрачно для коротковолновой радиации, суммарный направленный вниз поток которой равен /. Уравновешивающий направленный вверх поток длинноволновой радиации от почвы равен и, доля е которого поглощается стеклом и нагревает его, что вызывает излучение потока В в обоих направлениях.

Самописец для регистрации изменений интенсивности солнечной радиации. Состоит из приемника и регистрирующей части — гальванографа. В качестве приемника в А. для прямой радиации применяется большей частью термоэлектрический актинометр, вращаемый за солнцем гелиостатом; в А. для рассеянной радиации (пира-нографе)—пиранометр с кольцевой защитой; в А. для суммарной радиации (соляриграфе) — незатененный пиранометр. Запись показаний приемников производится большей частью механически, изредка — фотографическим путем. В этом случае применяется зеркальный гальванометр, зеркальце которого отбрасывает «зайчик» на ленту из фотобумаги, вращаемую часовым механизмом.[ . ]

Так как текущее состояние океана и атмосферы является результатом их отклика на радиацию, получаемую от Солнца, хотелось бы знать, какая изменчивость имеется в этой радиации. Суммарное количество радиации, падающей на Землю в течение 1 года, зависит только от радиации, исходящей от Солнца. Эта радиация измеряется солнечной постоянной 5; ее фактическое значение определяется равенством (1.2.1). Измерения, проводимые начиная с 1920 года [176], показали отсутствие изменчивости, превышающей возможные погрешности измерений, так что за этот период 5 изменялось не более чем на 1 или 2%. Таким образом, гипотеза о постоянстве 5, что предполагается и в самом названии «солнечная постоянная», согласовывается с полученными по сей день наблюдениями, хотя другие возможности не исключаются. Однако количество радиации, падающей в отдельную точку на Земле, меняется в огромных пределах между днем и ночью и от сезона к сезону, и эти вариации несомненно важны для известной нам жизни. Так как акцент в этой книге делается на периоды, большие чем сутки, то суточные вариации не будут непосредственно рассматриваться. Однако важно подчеркнуть, что существование суточных вариаций может оказать воздействие на состояние атмосферы на более длительных периодах; величина эффекта зависит от амплитуды суточных вариаций. Воздух не является «неперемешиваемым» ночыо, так что суммарный эффект существенно отличен от того, который достигается при постоянной радиации.[ . ]

Например, на Цугшпитце средняя ультрафиолетовая радиация для всех погодных условий за 1964-— 1971 гг. составляет 66 % средней ультрафиолетовой радиации для безоблачных дней, а на высоте 1780 м — 55% и на высоте 740 м (Гармиш) — 53% соответствующих значений для безоблачных дней. Максимальные интенсивности ультрафиолетовой радиации регистрируются несколько ниже верхней границы слоистообразных облаков, а не в безоблачных условиях, что является результатом рассеяния.[ . ]

В результате проведенных после аварии работ по дезактивации территории и сооружений радиохимического завода, а также населенных пунктов Георгиевка и Черная речка уровни радиации удалось снизить более чем на порядок.[ . ]

Необходимо добавить несколько слов по поводу действия ультрафиолетового излучения на биоту. Суммарная ультрафиолетовая радиация у земной поверхности определяется не только эффективностью озонового слоя, но сильно зависит и от других факторов, прежде всего от состояния атмосферы, ее состава и примесей. Поэтому уменьшение общего содержания озона не обязательно будет приводить к росту ультрафиолетового излучения. Согласно [65], в настоящее время нет убедительных свидетельств положительных трендов УФ-Б и УФ-С радиации в период заметного уменьшения общего содержания озона. Необходимо подчеркнуть, что озоновый дефицит наблюдается, как правило, весной или зимой, когда вследствие низкого положения Солнца нельзя ожидать высоких значений ультрафиолетовой радиации.[ . ]

Результаты исследований, проведенных в Альпах, в частности О. Экелем, указывают, что прямая УФ-В радиация на высотах от 200 и до 3500 м возрастает на 100 % летом и на 280 % зимой, тогда как соответствующий рост суммарной УФ-В радиации составляет только 34 и 72% соответственно (см. [90, с. 99—100]). Значения оптических масс атмосферы для этих данных не приведены, хотя в общем они находятся в соответствии с данными Колдуэлла. Вессели [102] использовал интерференционный фильтр и фотоэлементы в диапазоне 0,32—0,34 мкм и пришел к выводу, что в конце апреля 1964 г. на высоте 2700 м прямая ультрафиолетовая радиация составляла 90 % от соответствующего значения на Зоннблике (3106 м), а на высоте 1600 м — всего 73% (рис. 2.9).[ . ]

Имеет значение также степень черноты поверхностей экранов и стенки, их толщина и свойства материала.[ . ]

На границе земной атмоо iL .-f/P феры с космосом радиация составляет от 1,98 до 2 кал/см2мин., или 136 МВТ/ см2 («солнечная постоянная»). Как видно на рисунке 4.1,42% всей пад ающей радиации (33%+9%) отражается атмосферой в космическое пространство, 15% поглощается толщей атмосферы и вдет на ее нагревание и только 43% достигает земной поверхности. Эта доля радиации состоит из прямой радиации (27%)—почта параллельных лучей, идущих непосредственно от Солнца и несущих наибольшую энергетическую нагрузи и рассеянной (диффузной) радиации (16%) — лучей, поступающих к — /У/ Земле со всех точек небосвода, рассеянных молекулами газов воздуха, капельками водяных паров, кристалликами лада, частицами пыли, атакже отраженных вниз от облаков. Обшую сумму прямой и рассеянной радиации назьгва-ют суммарной радиацией.[ . ]

Спектрофотометрические методы определения аэрозольной компоненты ослабления атмосферы, под которой обычно понимают ослабление прямой радиации Солнца суммарным эффектом рассеяния и поглощения света частичками аэрозоля в атмосфере, основаны на применении закона Ламберта—Бугера (см. § 2). Оставляя пока в стороне вопросы исследования оптических свойств аэрозоля и его пространственно-временного распределения в атмосфере (см. гл. VI), приведем здесь лишь формальную методику определения спектральной аэрозольной толщи.[ . ]

Метеорологическая сеть состоит из наземного оборудования, предназначенного для измерения направления и скорости ветра; температуры воздуха; градиентов температуры на 100 м; суммарной солнечной радиации; относительной влажности; дождевых осадков; атмосферного давления.[ . ]

Альбедо всех поверхностей, а особенно водных зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее — утром и вечером. Это связано с тем, что при малой высоте Солнца в составе суммарной радиации возрастает доля рассеянной, которая в большей степени, чем прямая радиация отражается от шероховатой подстилающей поверхности.[ . ]

АБИОТИЧЕСКИЕ ФАКТОРЫ СРЕДЫ — это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Среди них главенствующую роль играют климатические (солнечная радиация, световой режим, температура, влажность, атмосферные осадки, ветер, давление и др.); затем идут эдафические (почвенные), важные для обитающих в почве животных; и ,наконец, гидрографические, или факторы водной среды. Солнечная радиация является основным источником энергии, определяющим тепловой баланс и термический режим биосферы. Так, суммарная солнечная радиация, поступающая на земную поверхность, в направлении от экватора к полюсам уменьшается примерно в 2,5 раза (от 180-220 до 60-80 ккал/см2 -год). На основе радиационного режима и характера циркуляции атмосферы выделяются на поверхности Земли климатические пояса. Однако солнечная радиация в свою очередь служит и важнейшим экологическим фактором, влияющим на физиологию и морфологию живых организмов. Существование на поверхности нашей планеты крупных зональных типов растительности (тундра, тайга, степи, пустыни, саванны, влажные тропические леса и др.) обусловлено в основном климатическими причинами; причем они тесно связаны с климатической зональностью.[ . ]

Для инфракрасного конца спектра солнечного излучения (>0,65 мкм) также существует высотная зависимость. Например, Кондратьев (см. [64], с. 234), опираясь на исследования С. П. Попова в СССР, показал, что доля солнечного инфракрасного излучения в суммарной приходящей радиации возрастает от 64 % около уровня моря до 83 % на высоте 2000 м для постоянной оптической массы, равной трем. Соответствующее увеличение инфракрасной компоненты излучения наблюдается и в полярных широтах. И в том, и в другом случае оно является результатом меньшего содержания водяного пара и, следовательно, уменьшения ослабления радиации.[ . ]

Уже отмечалось, что единственным первичным источником внешней энергии на Земле является световое и тепловое излучение Солнца (см. гл. 2). Ежегодно на земную поверхность падает около 21-1023 кДж, из этой величины на участки Земли, покрытые растениями, а также на водоемы с содержащейся в них растительностью приходится только около 40%. С учетом потери энергии радиации вследствие отражения и других причин, а также энергетического выхода фотосинтеза, не превышающего 2%, общее количество энергии, запасаемой ежегодно в продуктах фотосинтеза, выразится величиной порядка 20-1022 кДж. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания. Эти энергетические затраты составляют около 30—40% энергии, расходуемой на создание чистой продукции. Таким образом, растительность суши преобразует суммарно (на дыхание и создание чистой продукции) около 4,2-1018 кДж в год солнечной энергии.[ . ]

Прибор для измерения радиационного баланса земной поверхности. Абсолютным Б. является так называемый абсолютный пиргеометр Михельсона. Его приемная часть состоит из двух горизонтально расположенных друг над другом тонких металлических пластинок, обращенных зачерненными поверхностями одна — вверх, другая — вниз. На верхнюю пластинку поступает поток суммарной радиации и встречного излучения атмосферы, на нижнюю —■ поток земного излучения и отраженной радиации. Разность температур верхней и нижней пластинок, обусловленная разностью поступающих на них потоков радиации, вызывает ток в термоэлектрической батарее, спаи которой поочередно прикреплены к нижней и верхней пластинкам. Этот ток уравновешивается током от постороннего источника, пропускаемым через нижнюю пластинку; по силе компенсирующего тока определяется величина радиационного баланса земной поверхности в кал/см2-мин.[ . ]

Приземный слой тропосферы в наибольшей степени испытывает антропогенное воздействие, основным видом которого является химическое и тепловое загрязнение воздуха. Температура воздуха испытывает наиболее сильное влияние урбанизации территории. Температурные различия между урбанизированной территорией и окружающими ее неосвоенными человеком участками связаны с размерами города, плотностью застройки, синоптическими условиями. Тенденция к повышению температуры имеется в каждом маленьком и большом городе. Для крупных городов умеренной зоны контраст температуры между городом и пригородом составляет 1—3° С. В городах уменьшается альбедо подстилающей поверхности (отношение отраженной радиации к суммарной) в результате появления зданий, сооружений, искусственных покрытий, здесь более интенсивно поглощается солнечная радиация, накапливается конструкциями зданий поглощенное днем тепло с его отдачей в атмосферу в вечернее и ночное время. Уменьшается расход тепла на испарение, так как сокращаются площади с открытым почвенным покровом, занятым зелеными насаждениями, а быстрое удаление атмосферных осадков системами дождевой канализации не позволяет создавать запас влаги в почвах и поверхностных водоемах. Городская застройка приводит к формированию зон застоя воздуха, что приводит к ее перегреву, в городе также изменяется прозрачность воздуха из-за увеличенного содержания в нем примесей от промышленных предприятий и транспорта. В городе уменьшается суммарная солнечная радиация, а также встречного инфракрасного излучения земной поверхности, которое совместно с теплоотдачей зданий приводит к появлению местного «парникового эффекта», т. е. город «накрывается» покрывалом из парниковых газов и аэрозольных частиц. Под влиянием городской застройки изменяется количество выпадаемых осадков. Основным фактором этого служит радикальное снижение проницаемости для осадков подстилающей поверхности и создание сетей по отводу поверхностного стока с территории города. Велико значение огромного количества сжигаемого углеводородного топлива. На территории города в теплое время наблюдается снижение значений абсолютной влажности и обратная картина в холодное время — в черте города влажность выше, чем за городом.[ . ]

Понятие о солнечной радиации: прямая, рассеянная, суммарная. Зависимость радиации от излома солнечных лучей.

Солнечная радиация — электромагнитное и корпускулярное излучение Солнца. Электромагнитная радиация распространяется в виде электромагнитных волн со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере. Солнечная радиация обычно измеряется по ее тепловому действию и выражается в калориях на единицу поверхности за единицу времени. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения.

Суммарная солнечная радиация — вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года — летом.

Рассеянная солнечная радиация — часть солнечного излучения (около 25%), претерпевшая рассеяние в атмосфере — преобразованная в атмосфере из прямой солнечной радиации в радиацию, идущую по всем направлениям. Причиной рассеяния солнечных лучей является неоднородность воздуха. Радиация распространяется от рассеивающих частиц воздуха так, как если бы эти частицы сами были источником излучения. Рассеянной солнечной радиацией объясняется голубой цвет неба.

Прямая солнечная радиация — радиация, приходящая к земной поверхности непосредственно от Солнца. На земную поверхность солнечная радиация приходит пучком практически параллельных лучей и характеризуется интенсивностью радиации.

Отраженная солнечная радиация — часть суммарной солнечной радиации, которая не поглощается земной поверхностью, а отражается от нее. Зависит от характера поверхности отражения.

Количество солнечной радиации зависит от:

1) угла падения солнечных лучей

2) продолжительности светлого времени суток

Чем выше стоит Солнце и чем больше угол падения солнечных лучей, тем больше радиации поглощает земная поверхность. Если угол падения солнечных лучей маленький, большая часть солнечных лучей отражается от Земли.

Самое большое количество солнечной радиации получают пустыни, лежащие вдоль линий тропиков. Солнце там поднимается высоко и погода почти весь год безоблачная.

Над экватором в атмосфере много водяного пара, который формирует плотную облачность. Пар и облачность поглощает большую часть солнечной радиации.

Полярные районы получают меньше всего радиации, там солнечные лучи почти скользят по поверхности Земли.

Подстилающая поверхность отражает радиацию по-разному. Тёмные и неровные поверхности отражают мало радиации, а светлые и гладкие хорошо отражают.

Море в шторм отражает меньше радиации, чем море в штиль.

Альбедо (лат. albus — белый) – способность поверхности отражать радиацию.

Зависимость количества солнечной радиации от продолжительности светлого времени суток

В приэкваториальных областях продолжительность дня и ночи в течении года почти не изменяется, чем дальше от экватора, тем сильнее различие.

Из-за наклона земной оси разные регионы Земли получают разное количество света и тепла.

Между полярными кругами и полюсами устанавливаются полярные день и ночь.

Так как земная ось расположена к Солнцу под углом, летом полярные области получают солнечную радиацию 24 часа в сутки – это полярный день.

А в зимние месяцы Солнце вообще не поднимается над горизонтом — это полярная ночь. Чем ближе от полярного круга к полюсу, тем длиннее полярный день и полярная ночь.

На полюсах полярный день длится шесть месяцев и полярная ночь тоже шесть месяцев.
Почему происходит смена времён года?

Смена времён года обусловлена обращением Земли вокруг Солнца и наклоном земной осиотносительно Солнца.

Зенит – угол падения солнечных лучей, равный 90°.

Как образовались тепловые пояса?

Угол наклона земной оси Земли к плоскости орбиты Земли в течение года не изменяется. По этой причине Солнце может быть в зените только между Северным и Южным тропиками, а полярные день и ночь — между полярными кругами и полюсами. По этим линиям поверхность Земли делится на тепловые пояса.

В жарком поясе в течение всего года угол падения солнечных лучей остаётся большим. День и ночь здесь имеют примерно одинаковую длину, и по температуре различить времена года невозможно.

В холодном поясе разница между температурами полярной ночи и полярного дня очень велика. Поэтому здесь существует два времени года: холодная, когда температура опускается в среднем до — 30°С, и тёплое, со средней температурой около 0°С.

Лишь в умеренном поясе год чётко делится на четыре сезона: весну, лето, осень и зиму.

Дата добавления: 2018-04-15 ; просмотров: 4215 ; Мы поможем в написании вашей работы!

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.007)

Что такое суммарная радиация

Суммарная радиация — это сумма прямой (на горизонтальную поверхность) и рассеянной радиации. Состав суммарной радиации, т. е. соотношение между прямой и рассеянной радиацией, меняется в зависимости от высоты солнца, прозрачности, атмосферы и облачности.

1. До восхода солнца суммарная радиация состоит полностью, а при малых высотах солнца — преимущественно из рассеянной радиации. С увеличением высоты солнца доля рассеянной радиации в составе суммарной при безоблачном небе уменьшается: при h = 8° она составляет 50%, а при h = 50° — только 10-20%.

2. Чем прозрачнее атмосфера, тем меньше доля рассеянной радиации в составе суммарной.

3. В зависимости от формы, высоты и количества облаков доля рассеянной радиации увеличивается в разной степени. Когда солнце закрыто плотными облаками, суммарная радиация состоит только из рассеянной. При таких облаках рассеянная радиация лишь частично восполняет уменьшение прямой, и поэтому увеличение количества и плотности облаков в среднем сопровождается уменьшением суммарной радиации. Но при небольшой или тонкой облачности, когда солнце совсем открыто или не полностью закрыто облаками, суммарная радиация за счет увеличения рассеянной может оказаться больше, чем при ясном небе.

Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца: суммарная радиация изменяется почти прямо пропорционально изменению высоты солнца. Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации.

Суммарная радиация существенно зависит также от широты места. С уменьшением широты ее суточные суммы увеличиваются, причем, чем меньше широта места, тем равномернее суммарная радиация распределяется по месяцам, т. е. тем меньше амплитуда ее годового хода. Например, в Павловске (ц = 60°) ее месячные суммы составляют от 12 до 407 кал/см 2 , в Вашингтоне (ц = 38,9°) — от 142 до 486 кал/см 2 , а в Такубае (ц = 19°) — от 307 до 556 кал/см 2 . Годовые суммы суммарной радиации также увеличиваются с уменьшением широты. Однако в отдельные месяцы суммарная радиация в полярных районах может быть больше, чем в более низких широтах. Например, в бухте Тихой в июне суммарная радиация на 37% больше, чем в Павловске, и на 5% больше чем в Феодосии.

Непрерывные наблюдения в Антарктиде за последние 7-8 лет показывают, что месячные суммы суммарной радиации в этом районе в самом теплом месяце (декабре) примерно в 1,5 раза больше, чем на таких же широтах в Арктике, и равны соответствующим суммам в Крыму и в Ташкенте. Даже годовые суммы суммарной радиации в Антарктиде больше, чем, например, в Санкт-Петербурге. Такой значительный приход солнечной радиации в Антарктиде объясняется сухостью воздуха, большой высотой антарктических станций над уровнем моря и высокой отражательной способностью снежной поверхности (70-90%), увеличивающей рассеянную радиацию [2, с. 215]

Разность между всеми приходящими на деятельную поверхность и уходящими от нее потоками лучистой энергии называется радиационным балансом деятельной поверхности. Иначе говоря, радиационный баланс деятельной поверхности представляет собой разность между приходом и расходом радиации на этой поверхности. Если поверхность горизонтальна, то к приходной части баланса относятся прямая радиация, приходящая на горизонтальную поверхность, рассеянная радиация и встречное излучение атмосферы. Расход радиации слагается из отраженной коротковолновой, длинноволнового излучения деятельной поверхности и отраженной от нее части встречного излучения атмосферы.

Радиационный баланс представляет собой фактический приход, или расход лучистой энергии на деятельной поверхности, от которого зависит, будет ли происходить ее нагревание или охлаждение. Если приход лучистой энергии больше ее расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то радиационный баланс отрицателен и поверхность охлаждается. Радиационный баланс в целом, как и отдельные составляющие его элементы, зависит от многих факторов. Особенно сильно на него влияют высота солнца, продолжительность солнечного сияния, характер и состояние деятельной поверхности, замутнение атмосферы, содержание в ней водяного пара, облачность и др.

Мгновенный (минутный) баланс днем обычно положителен, особенно летом. Примерно за 1 час до захода солнца (исключая зимнее время) расход лучистой энергии начинает превышать ее приход, и радиационный баланс становится отрицательным. Приблизительно через 1 час после восхода солнца он снова становится положительным. Суточный ход баланса днем при ясном небе примерно параллелен ходу прямой радиации. В течение ночи радиационный баланс обычно изменяется мало, но под влиянием переменной облачности он может изменяться значительно [10, с. 85]

Годовые суммы радиационного баланса положительны на всей поверхности суши и океанов, кроме районов с постоянным снежным или ледяным покровом, например Центральной Гренландии и Антарктиды. Севернее 40° северной широты и южнее 40° южной широты зимние месячные суммы радиационного баланса отрицательны, причем период с отрицательным балансом увеличивается в направлении к полюсам. Так, в Арктике эти суммы положительны только в летние месяцы, на широте 60° — в течение семи месяцев, а на широте 50° — в течение девяти месяцев. Годовые суммы радиационного баланса меняются при переходе с суши на море.

Радиационный баланс системы Земля-атмосфера представляет собой баланс лучистой энергии в вертикальном столбе атмосферы сечением 1 см 2 , простирающемся от деятельной поверхности до верхней границы атмосферы. Его приходная часть состоит из солнечной радиации, поглощенной деятельной поверхностью и атмосферой, а расходная — из той части длинноволнового излучения земной поверхности и атмосферы, которая уходит в мировое пространство. Радиационный баланс системы Земля-атмосфера положителен в поясе от 30° южной широты до 30° северной широты, а в более высоких широтах он отрицателен [4, с. 209]

Изучение радиационного баланса представляет большой практический интерес, так как этот баланс является одним из основных климатообразующих факторов. От его величины зависит тепловой режим не только почвы или водоема, но и прилежащих к ним слоев атмосферы. Знание радиационного баланса имеет большое значение при расчетах испарения, при изучении вопроса о формировании и трансформации воздушных масс, при рассмотрении влияния радиации на человека и растительный мир.

Суммарная солнечная радиация. Солнечная радиация: виды

Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи — отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.

Электромагнитные волны

При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.

Солнце — основной и мощнейший источник радиации вблизи нашей планеты. В свою очередь, Земля (ее атмосфера и поверхность) и сама излучает радиацию, но в другом диапазоне. Наблюдение за температурными условиями на планете в течение длительных промежутков времени породило гипотезу о равновесии количества тепла, получаемого от Солнца и отдаваемого в космическое пространство.

солнечная радиация

Радиация солнца: спектральный состав

Абсолютное большинство (около 99%) солнечной энергии в спектре лежит в интервале длин волн от 0,1 до 4 мкм. Оставшийся 1% — лучи большей и меньшей длины, включая радиоволны и рентгеновское излучение. Около половины лучистой энергии солнца приходится на тот спектр, который мы воспринимаем взглядом, примерно 44% — на инфракрасное излучение, 9% — на ультрафиолетовое. Откуда нам известно, как делится солнечная радиация? Расчет ее распределения возможен благодаря исследованиям с космических спутников.

Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.

Явление люминесценции происходит после поглощения веществом некоторого количества энергии и перехода в другое состояние (т. н. возбужденное), более энергетически высокое, чем при собственной температуре вещества. Люминесценция появляется при обратном переходе — из возбужденного в привычное состояние. В природе мы можем наблюдать ее в виде ночных свечений неба и полярного сияния.

Наше светило

Энергия солнечных лучей — почти единственный источник тепла для нашей планеты. Собственная радиация, идущая из ее глубин к поверхности, имеет интенсивность, меньшую примерно в 5 тысяч раз. При этом видимый свет — один из важнейших факторов жизни на планете — лишь часть солнечной радиации.

Энергия солнечных лучей переходит в тепло меньшей частью — в атмосфере, большей — на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.

 суммарная солнечная радиация

Солнечная радиация: определение

Ту радиацию, которая идет к поверхности нашей планеты непосредственно от солнечного диска, принято именовать прямой солнечной радиацией. Солнце распространяет ее во всех направлениях. С учетом огромного расстояния от Земли до Солнца, прямая солнечная радиация в любой точке земной поверхности может быть представлена как пучок параллельных лучей, источник которых — практически в бесконечности. Площадь, расположенная перпендикулярно лучам солнечного света, получает, таким образом, ее наибольшее количество.

Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина — энергетическая освещенность — в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) — дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Куда девается дошедшая до Земли солнечная радиация? Виды ее определяются множеством факторов. В зависимости от географической широты, влажности, облачности, часть ее рассеивается в атмосфере, часть поглощается, но большинство все же достигает поверхности планеты. При этом незначительное количество отражается, а основное — поглощается земной поверхностью, под действием чего та подвергается нагреванию. Рассеянная же солнечная радиация частично также попадает на земную поверхность, частично ею поглощается и частично отражается. Остаток ее уходит в космическое пространство.

солнечная радиация в россии

Как происходит распределение

Однородна ли солнечная радиация? Виды ее после всех «потерь» в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.

Поглощает радиацию главным образом озон — видимый спектр, и ультрафиолетовые лучи. Излучение инфракрасного диапазона поглощается углекислым газом (диоксидом углерода), которого, кстати, в атмосфере очень немного.

Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.

солнечная радиация виды

Дневной свет

Вследствие рассеяния свет, идущий от солнца, при прохождении слоев атмосфер изменяет цвет. Практическое значение рассеяния — в создании дневного света. Если бы Земля была лишена атмосферы, освещение существовало бы лишь в местах попадания прямых или отраженных поверхностью лучей солнца. То есть атмосфера — источник освещения днем. Благодаря ей светло и в местах, недоступных прямым лучам, и тогда, когда солнце скрывается за тучами. Именно рассеяние придает воздуху цвет — мы видим небо голубым.

А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями — собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).

Суммарная радиация

Под ней подразумевается общее количество радиации, падающей на земную поверхность, — и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.

По этой причине летом суммарная радиация в среднем выше до полудня, чем после него. А в первом полугодии — больше, чем во втором.

Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Под понятием собственного излучения земной поверхности понимают длинноволновую радиацию, излучаемую растительностью, снежным покровом, верхними слоями воды и почвы. Радиационным балансом поверхности именуют разность между ее поглощенным количеством и излучаемым.

солнечная радиация расчет

Эффективное излучение

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат — тепла ночью.

Существует оно и в дневные часы. Но в течение дня частично компенсируется или даже перекрывается поглощенной радиацией. Поэтому поверхность земли теплее днем, чем ночью.

О географическом распределении радиации

Солнечная радиация на Земле в течение года распределяется неравномерно. Ее распределение несет зональный характер, причем изолинии (соединяющие точки одинаковых значений) радиационного потока вовсе не идентичны широтным кругам. Такое несоответствие вызвано различными уровнями облачности и прозрачности атмосферы в разных районах Земного шара.

Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого — повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново — в северном полушарии меньше, в районе снежной и малооблачной Антарктиды — больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Почти повсюду на Земле поверхность имеет положительный радиационный баланс, то есть за одно и то же время приток радиации больше эффективного излучения. Исключение составляют области Антарктиды и Гренландии с их ледяными плато.

солнечная суммарная радиация в россии

Грозит ли нам глобальное потепление?

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).

Таким образом, радиационного равновесия как такового на поверхности Земли не существует. Зато имеет место тепловое равновесие — поступление и убыль тепла уравновешивается разными путями, в том числе радиационным.

Распределение баланса по карте

В одних и тех же широтах Земного шара радиационный баланс больше на поверхности океана, чем над сушей. Объяснить это можно тем, что слой, поглощающий радиацию, в океанах имеет большую толщину, в то же время эффективное излучение там меньше из-за холода морской поверхности по сравнению с сушей.

Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.

Конечно же, главный фактор, от которого зависит среднегодовое солнечное излучение, это широта того или иного района. Рекордные «порции» ультрафиолета достаются странам, расположенным вблизи экватора. Это Северо-Восточная Африка, ее восточное побережье, Аравийский полуостров, север и запад Австралии, часть островов Индонезии, западная часть побережья Южной Америки.

В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.

 от чего зависит солнечная радиация

А как у нас?

Солнечная суммарная радиация в России распределена, на первый взгляд, неожиданно. На территории нашей страны, как ни странно, вовсе не черноморские курорты держат пальму первенства. Самые большие дозы солнечного излучения приходятся на территории, пограничные с Китаем, и Северную Землю. В целом солнечная радиация в России особой интенсивностью не отличается, что вполне объясняется нашим северным географическим положением. Минимальное количество солнечного света достается северо-западному региону – Санкт-Петербургу вместе с прилегающими районами.

Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте — Карпаты с южными областями Украины.

Суммарная (к ней относится и прямая, и рассеянная) солнечная радиация, попадающая на горизонтальную поверхность, приводится по месяцам в специально разработанных таблицах для разных территорий и измеряется в МДж/м 2 . Например, солнечная радиация в Москве имеет показатели от 31-58 в зимние месяцы до 568-615 летом.

О солнечной инсоляции

Инсоляция, или объем полезного излучения, падающего на освещаемую солнцем поверхность, значительно варьируется в разных географических точках. Годовая инсоляция рассчитывается на один квадратный метр в мегаваттах. Например, в Москве эта величина — 1,01, в Архангельске — 0,85, в Астрахани — 1,38 МВт.

При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия — туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.

Солнечная радиация

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10 -9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы. Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени (см. Солнечная постоянная).

Содержание

Влияние солнечной радиации на климат

Солнечная радиация сильно влияет на Землю только в дневное время, безусловно — когда Солнце находится над горизонтом. Также солнечная радиация очень сильна вблизи полюсов, в период полярных дней, когда Солнце даже в полночь находится над горизонтом. Однако зимой в тех же местах Солнце вообще не поднимается над горизонтом, и поэтому не влияет на регион. Солнечная радиация не блокируется облаками, и поэтому всё равно поступает на Землю (при непосредственном нахождении Солнца над горизонтом). Солнечная радиация — это сочетание ярко-жёлтого цвета Солнца и тепла, тепло проходит и сквозь облака. Солнечная радиация передаётся на Землю посредством излучения, а не методом теплопроводности.

Сумма радиации, полученной небесным телом, зависит от расстояния между планетой и звездой — при увеличении расстояния вдвое количество радиации, поступающее от звезды на планету уменьшается вчетверо (пропорционально квадрату расстояния между планетой и звездой). Таким образом, даже небольшие изменения расстояния между планетой и звездой (зависит от эксцентриситета орбиты) приводят к значительному изменению количества поступающей на планету радиации. Эксцентриситет земной орбиты тоже не является постоянным — с течением тысячелетий он меняется, периодически образуя то практически идеальную круг, иногда же эксцентриситет достигает 5% (в настоящее время он равен 1,67%), то есть в перигелии Земля получает в настоящее время в 1,033 больше солнечной радиации, чем в афелии, а при наибольшем эксцентриситете — более чем в 1,1 раза. Однако гораздо более сильно количество поступающей солнечной радиации зависит от смен времён года — в настоящее время общее количество солнечной радиации, поступающее на Землю, остаётся практически неизменным, но на широтах 65 С.Ш. (широта северных городов России, Канады) летом количество поступающей солнечной радиации более чем на 25% больше, чем зимой. Это происходит из-за того, что Земля по отношению к Солнцу наклонена под углом 23,3 градуса. Зимние и летние изменения взаимно компенсируются, но тем не менее по росту широты места наблюдения всё больше становится разрыв между зимой и летом, так, на экваторе разницы между зимой и летом нет. За Полярным кругом же летом поступление солнечной радиации очень высоко, а зимой очень мало. Это формирует климат на Земле. Кроме того, периодические изменения эксцентриситета орбиты Земли могут приводить к возникновению различных геологических эпох: к примеру, ледникового периода.

Таблицы

Средняя дневная сумма солнечной радиации, кВтч/м² [1]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
1,67 2,19 2,29 2,96 2,60 2,72 2,91 2,74 3,47 2,73 3,69 3,45 4,00 3,99 3,83 4,57 6,34
Средняя дневная сумма солнечной радиации в декабре, кВтч/м² [1]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
0 0 0,05 0,16 0,17 0,33 0,62 0,61 0,97 0,60 1,29 1,00 1,25 2,04 1,68 1,64 4,30
Средняя дневная сумма солнечной радиации в июне, кВтч/м² [1]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
4,99 5,14 5,51 6,19 5,78 5,56 5,48 4,80 5,72 4,84 5,94 5,76 6,75 5,12 5,84 7,41 8,00

Ссылки

Солнечная радиация. Географический словарь. Экологический центр «Экосистема». Архивировано из первоисточника 14 февраля 2012. Проверено 22 мая 2011.

Горин Павел/ автор статьи

Павел Горин — психолог и автор популярных статей о внутреннем мире человека. Он работает с темами самооценки, отношений и личного роста. Его экспертность основана на практическом консультировании и современных психологических подходах.

Понравилась статья? Поделиться с друзьями:
psihologiya-otnosheniy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: