Что такое сумма комплексных чисел

Комплексные числа

Известно, что квадратное уравнение с вещественными коэффициентами и отрицательным дискриминантом не имеет вещественных корней. В частности, уравнение
$$
z^2+1=0nonumber
$$
не имеет корней на множестве (mathbb). Возникает потребность расширить множество (mathbb) так, чтобы на более широком множестве было разрешимо квадратное уравнение с любыми вещественными коэффициентами.

Определение комплексного числа.

Комплексными числами называют пары ((x,y)) вещественных (действительных) чисел (x) и (y), для которых следующим образом определены понятие равенства и операции сложения и умножения.
Обозначим комплексное число ((x,y)) буквой (z), то есть положим (z=(x,y)). Пусть (z_1=(x_1,y_1)), (z_2=(x_2,y_2)). Два комплексных числа (z_1) и (z_2) считаются равными тогда и только тогда, когда (x_1=x_2) и (y_1=y_2), то есть
$$
\Leftrightarrow \ wedge .nonumber
$$

Сумма и произведение комплексных чисел (z_1) и (z_2) обозначаются соответственно (z_1+z_2) и (z_1z_2) и определяются формулами
$$
z_1+z_2=(x_1+x_2,y_1+y_2),label
$$
$$
z_1z_2=(x_1x_2-y_1y_2,x_1y_2+x_2y_1).label
$$

Из формул eqref и eqref следуют соотношения
$$
(x_1,0) + (x_2,0) = (x_1+x_2,0),qquad (x_1,0)(x_2,0) = (x_1x_2,0),nonumber
$$
которые показывают, что операции над комплексными числами вида ((x, 0)) совпадают с операциями над действительными числами. Поэтому комплексное число вида ((x, 0)) отождествляют с действительным числом (x), то есть полагают ((x,0) = x).

Среди комплексных чисел особую роль играет число ((0,1)), которое называют мнимой единицей и обозначают (i), то есть
$$
i = (0,1).nonumber
$$
Вычислив произведение (i) на (i) по формуле eqref, получим
$$
icdot i = (0,1)(0,1) = (-1,0) = -1,nonumber
$$
то есть (i^2 = -1). Используя формулы eqref, eqref, находим
$$
icdot y = (0,1)(y,0) = (0,y),qquad (x,y) = (x, 0) + (0,y) = x + iy.nonumber
$$

Следовательно, любое комплексное число (z= (x,y)) можно записать в виде (x + iy), то есть
$$
z = x + iy.label
$$

Запись комплексного числа (z = (x,y)) в виде eqref называют алгебраической формой комплексного числа.

В записи eqref число (x) называют действительной частью комплексного числа и обозначают (Re z), а число (y) — мнимой частью и обозначают (Im z), то есть
$$
Re z = x,quad Im z = y. nonumber
$$

Если (x= 0), то есть (z = iy), то такое комплексное число называют чисто мнимым.

Здесь и всюду в дальнейшем, если не оговорено противное, в записи (x+iy) числа (x) и (y) считаются действительными (вещественными).

Число (displaystylesqrt) обозначают (|z|) и называют модулем комплексного числа (z), то есть
$$
|z|=|x + iy|=sqrt.label
$$
Заметим, что (|z|geq 0) и (<|z| = 0>Leftrightarrow \).

Комплексное число (x-iy) называют сопряженным комплексному числу (z = x + iy) и обозначают (overline) то есть
$$
overline = overline= x-iy.label
$$
Из равенств eqref и eqref следует, что
$$
|z| = |overline|,qquad zoverline=|z|^2,label
$$
так как (zoverline=(x+iy)(x-iy) = x^2 + y^2).

Свойства операций.

Операции сложения и умножения комплексных чисел обладают свойствами:

  1. коммутативности, то есть
    $$
    z_1+z_2=z_2+z_1,qquad z_1z_2=z_2z_1;nonumber
    $$
  2. ассоциативности, то есть
    $$
    (z_1+z_2)+z_3= z_1 + (z_2+z_3),qquad (z_1z_2)z_3=z_1(z_2z_3);nonumber
    $$
  3. дистрибутивности, то есть
    $$
    z_1(z_2 + z_3) = z_1z_2+z_1z_3.nonumber
    $$

Эти свойства вытекают из определения операций сложения и умножения комплексных чисел и свойств операций для вещественных чисел.

Из этих свойств следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами, заменяя (i) на (-1). Например, равенство eqref можно получить так:
$$
z_1z_2=(x_1+iy_1)(x_2+iy_2)=\=x_1 x_2+i x_1 y_2+ix_2 y_1+i^2 y_1 y_2=x_1x_2-y_1y_2+i(x_1 y_2+x_2 y_1).nonumber
$$
Множество комплексных чисел обозначают буквой (mathbb). Числа (0= 0 + 0cdot i) и (1 = 1 + 0cdot i) на множестве (mathbb) обладают такими же свойствами, какие они имеют на множестве (mathbb), а именно: для любого (z in mathbb) справедливы равенства
$$
z+ 0 = z,qquad zcdot 1 = z.nonumber
$$
На множестве (mathbb) вычитание вводится как операция, обратная сложению. Для любых комплексных чисел (z_1=_1+iy_1) и (z_2 = x_2 + iy_2) существует, и притом только одно, число (z) такое, что
$$
z+z_2=z_1.label
$$
Это число называют разностью чисел (z_1) и (z_2) и обозначают (z_1-z_2). В частности, разность (0 -z) обозначают (-z).

Из уравнения eqref в силу правила равенства и определения суммы комплексных чисел следует, что
$$
z_1-z_2=(x_1-x_2)+i(y_1-y_2).nonumber
$$

Деление на множестве (mathbb) вводится как операция, обратная умножению, а частным от деления комплексного числа (z_1=_1+iy_1) на число (z_2 = x_2 + iy_2) называют такое число (z), которое удовлетворяет уравнению
$$
zz_2=z_1label
$$
и обозначается (z_1:z_2) или (displaystyle frac).

Докажем, что уравнение eqref для любых комплексных чисел (z_1) и (z_2), где (z_2neq 0), имеет единственный корень.

(circ) Умножая обе части уравнения eqref на (overline_2), получим в силу равенства eqref уравнение
$$
z|z_2|^2 = z_1overline_2,label
$$
которое равносильно уравнению eqref, так как (overline_2neq 0).

Эту формулу можно не запоминать — важно знать, что она получается умножением числителя и знаменателя на число, сопряженное со знаменателем.

Что такое комплексные числа

Первый урок по комплексным числам. Сегодня мы разберём:

    и зачем она нужна; ; ; ; ; .

Если же вас интересует тригонометрическая форма записи комплексного числа, либо извлечение корней из комплексных чисел — этим темам посвящены отдельные уроки.

Сегодня — лишь самое главное. Но не самое простое.:)

0. Краткая вводная

Когда-то нам хватало натуральных чисел:

Всё было прекрасно: «У тебя 5 бананов, у меня ещё 3 — итого у нас 5 + 3 = 8 бананов». Сумма двух натуральных чисел всегда даёт новое натуральное число (говорят, что операция сложения замкнута на множестве натуральных чисел).

Но вот на сцену выходит вычитание — и натуральных чисел стало недостаточно. Например разность 3 − 5 = −2 уже не будет натуральным. Так появились целые числа (натуральные, им противоположные и ноль):

Дальше к делу подключились операции умножения и деления. Да, произведение двух целых чисел всё ещё целое, но вот деление приводит к образованию дробей. Например, 1 : 2 или 5 : 4 уже нельзя записать целым числом. Так появилось множество рациональных чисел или множество дробей:

Это был настоящий триумф для древней математики, и в тот момент казалось, что ничего больше уже изобрести нельзя. Да и зачем?

Проблема пришла откуда не ждали. В какой-то момент классическое умножение «разрослось» до возведения в степень:

Тут-то и выяснилось, что возведение рационального числа в натуральную степень всё ещё будет рациональным числом. Но вот обратная операция — извлечение корня — выносит нас за пределы рациональных чисел:

[sqrt=1,41421. notin mathbb]

Так появилось множество действительных чисел — множество бесконечных десятичных дробей, которые могут быть периодическими (и тогда это обычное рациональное число) и непериодическими (такие числа называют иррациональными, и их неизмеримо больше).

Казалось бы: ну вот теперь точно всё! Что ещё нужно для счастья? Проблема в том, что на множестве действительных чисел нельзя извлечь даже самый простой квадратный корень из отрицательного числа:

Однако законы физики (особенно электродинамика и вообще всё, где есть слово «динамика») как бы намекали, что множество содержательных процессов протекает там, где привычные корни не извлекаются. А значит, следует расширить множество действительных чисел так, чтобы такие корни всё же извлекать.

И тут открылись врата в Ад.

1. Комплексная единица

Начнём с ключевого определения.

Определение. Комплексная единица — это число $i$, которое при возведении в квадрат даёт −1:

[^>=-1]

Очевидно, комплексная единица не является привычным нам действительным числом: $inotin mathbb$. Просто потому что квадрат действительного числа не может быть отрицательным.

Однако в остальном это такое же число, как и все остальные. Комплексные единицы можно складывать, умножать, их можно комбинировать с «нормальными» числами:

В последнем примере мы сгруппировали слагаемые и провели подобные — совсем как с многочленами. Нельзя напрямую сложить действительное число и комплексную единицу, поскольку сущность числа $i$ нам не ясна. Но привести подобные — всегда пожалуйста.

И это первое замечательное свойство комплексной единицы. По сути, работать с ней — всё равно что работать с многочленом. Просто вместо переменной $x$ теперь будет $i$. Ну и помним, что $^>=-1$, что ещё больше упрощает жизнь:

Обратите внимание: запись $1+i$ является окончательной, её нельзя упростить. Точно так же нельзя упростить многочлен $kx+b$, например. И тут мы плавно переходим к следующему пункту.

2. Стандартная форма записи комплексных чисел

А теперь всё по-взрослому.

Определение. Комплексное число — это любое число вида

[z=a+bi]

где $a$ и $b$ — действительные числа. При этом число $a$ называют действительной частью комплексного числа (пишут $a=operatornameleft( z right)$), а число $b$ — мнимой частью (пишут $b=operatornameleft( z right)$).

Часто комплексные числа обозначают именно буквой $z$. Хотя это совсем необязательно. И выглядит это примерно так:

[begin & z=5+3i \ & operatornameleft( z right)=5 \ & operatornameleft( z right)=3 \ end]

Запись вида $z=a+bi$ называется стандартной формой записи комплексного числа. Всякое действительно число можно представить в виде комплексного с нулевой мнимой частью:

[begin & 5=5+0cdot i \ & x=x+0cdot ileft( forall xin mathbb right) \ end]

И напротив: существуют «чисто мнимые» числа, у которых вообще нет действительной части. Та же комплексная единица, например:

[begin i &=0+1cdot i \ 35i &=0+35cdot i \ end]

Таким образом, действительные числа являются частным случаем комплексных. Подобно тому как рациональные числа являются частным случаем действительных (в конце концов, рациональные числа — те же десятичные дроби, но с дополнительным условием: они периодические).

2.1. Равенство комплексных чисел

Важно понимать, что пара чисел $a$ и $b$ однозначно задаёт комплексное число. Не существует двух разных представлений одного и того же числа $z$.

Поэтому имеет смысл следующее определение.

Поскольку от перестановки слагаемых сумма не меняется (сложение чисел — настолько суровая операция, что какие-то там «комплексные единицы» никак не нарушают его коммутативности), мы можем записать:

А вот перестановка мнимой и действительной части (если эти части разные) немедленно ведёт к нарушению равенства:

Подобно тому как точки с координатами (5; 7) и (7; 5) — это разные точки координатной плоскости, вот так и числа $5+7i$ и $7+5i$ — это разные числа. Помните об этом.:)

К координатной плоскости мы ещё вернёмся. А пока определим правила сложения и вычитания комплексных чисел.

3. Сложение и вычитание комплексных чисел

Выше мы проводили аналогию между комплексными числами и многочленами. Идём по этому пути дальше и вспоминаем, что многочлены можно складывать, группируя слагаемые и приводя подобные:

Точно так же можно определить и сложение (да и вычитание) двух комплексных чисел. Всё просто:

Не нужно учить эти формулы. Дальше будут формулы умножения и деления — они ещё сложнее. Нужно понять ключевую идею: мы работаем с комплексными числами точно так же, как с многочленами. С небольшим дополнением: все степени комплексной единицы выше первой «сжигаются» прямо по определению самой единицы:

Небольшое замечание. В отличие от математики 5—6 классов, в серьёзной «взрослой» алгебре нет такого понятия как «вычитание». Зато есть понятие противоположного элемента и алгебраической суммы:

Всё это в полной мере относится и к комплексным числам. Там тоже есть противоположные:

[z=a+biRightarrow -z=left( -a right)+left( -b right)cdot i]

Есть ноль (нейтральный элемент по сложению):

[begin 0 & =0+0cdot i \ z & =a+bi \ z+0 & =left( a+0 right)+left( b+0 right)cdot i= \ & =a+bi=z end]

В общем, множество комплексных чисел — это абсолютно «нормальное» множество с понятной операцией сложения. Буквально через пару минут мы определим и умножение, но сначала давайте всё-таки запишем определение самого множества комплексных чисел.

Определение. Множество комплексных чисел — это множество чисел вида $z=a+bi$, где $a$ и $b$ — действительные числа, $^>=-1$ — комплексная единица.

Записывается это так:

[mathbb=left< a+bi|a,bin mathbb;^>=-1 right>]

Не пугайтесь, когда увидите подобную запись где-нибудь в учебнике алгебры. По сути, это краткая запись всего того, о чём мы говорили выше. Ничего нового мы здесь не узнали.

А вот что действительно представляет интерес — сейчас узнаем.:)

4. Геометрическая интерпретация комплексных чисел

Итак, комплексное число — это просто конструкция вида $a+bi$. И такая конструкция однозначно определяется парой действительных чисел $left( a;b right)$. Такую пару ещё называют упорядоченной. К примеру, (3; 17) и (17; 3) — это разные пары, которые задают разные комплексные числа.

Такие упорядоченные пары удобно рассматривать как координаты точек. По горизонтали (ось абсцисс) мы будем отмечать действительную часть числа, а по вертикали (ось ординат) — мнимую.

Определение. Комплексная плоскость — декартова система координат, где по горизонтали отмечается действительная часть комплексного числа, а по вертикали — мнимая.

Рассмотрим несколько примеров. Отметим на комплексной плоскости числа:

Как видим, привычные нам действительные числа располагаются по горизонтали — на оси абсцисс. Они состоят только из действительной части. Таким числом является $_>=4+0cdot i$ (отмечено красным).

А ещё есть «чисто мнимые» комплексные числа, у которых вообще нет действительной части. Они располагаются по вертикали — на оси ординат. Таким числом является, например, $_>=0+2i$ (отмечено фиолетовым).

4.1. Ещё раз о сложении и вычитании

Такое представление чисел — в виде точек на комплексной плоскости — называется геометрической интерпретацией. Числа в таком виде удобно складывать и вычитать. По сути, всё сводится к сложению обычных векторов.

Допустим, мы хотим сложить два числа:

Отметим эти числа на комплексной плоскости, построим векторы из начала координат с концами в отмеченных точках, а затем просто сложим эти векторы (по правилу треугольника или параллелограмма — как пожелаете):

Координаты новой точки: (6; 2). Следовательно, сумма равна:

Аналогичный результат можно получить и алгебраически:

Как видим, алгебраические выкладки заняли гораздо меньше времени и места. Уже хотя бы потому что не потребовалось чертить систему координат.:)

Зачем же тогда нужна комплексная плоскость и геометрическая интерпретация? Всё встанет на свои места буквально через пару уроков, когда мы рассмотрим тригонометрическую форму записи комплексных чисел, а также будем извлекать из этих чисел корни.

А чтобы подготовиться к этим урокам, рассмотрим ещё два ключевых определения.

5. Комплексно-сопряжённые и модуль числа

Для начала вспомним школьную алгебру. Работа с многочленами, 7-й класс:

Важное замечание: в роли $a$ и $b$ может выступать что угодно. Например, в 8-м классе мы использовали сопряжённые для избавления от иррациональности в знаменателе:

В математических классах с помощью сопряжённых искали обратные числа, чтобы затем решать сложные показательные и логарифмические уравнения:

Теперь настало время комплексных чисел. В них тоже можно ввести понятие сопряжённых.

5.1. Комплексно-сопряжённые

Определение. Пусть дано комплексное число $z=a+bi$. Тогда комплексно-сопряжённым называется число

[overline=a-bi]

Комплексно-сопряжённые числа отмечаются чертой сверху.

Рассмотрим несколько примеров:

Видим, что комплексно-сопряжённое к «чисто мнимому» числу есть число, ему противоположное. А комплексно-сопряжённое к действительному числу есть само это число.

Зачем нужны комплексно-сопряжённые? Вспомним всё ту же формулу разности квадратов:

Итак, произведение числа на комплексно-сопряжённое даёт сумму квадратов действительной и мнимой части. Это ключевое свойство комплексно-сопряжённых, и оно позволяет нам рассмотреть следующее определение.

5.2. Модуль комплексного числа

Снова вспомним школьную алгебру. Модуль действительного числа определяют так:

[left| a right|=left < begin& 1cdot a,quad a gt 0 \ & 0cdot a,quad a=0 \ & left( -1 right)cdot a,quad a lt 0 \end right.]

Ключевая идея: модуль числа — это всегда неотрицательная величина, равная расстоянию от точки, соответствующей этому числу, до начала отсчёта. Но всё это происходит на числовой прямой. На комплексной плоскости к делу подключается теорема Пифагора.

Определение. Модуль комплексного числа — это величина, которая обозначается $left| z right|$ и считается по формуле:

[left| z right|=sqrt>+^>>]

Вновь обратимся к геометрической интерпретации:

Красным отмечен прямоугольный треугольник с катетами $left| a right|$ и $left| b right|$. По теореме Пифагора его гипотенуза как раз равна $left| z right|$:

Таким образом, модуль комплексного числа — это расстояние от начала координат до точки, соответствующей этому числу. В частности, при $b=0$ мы получаем классическое определение модуля для действительных чисел:

[b=0Rightarrow left| z right|=sqrt>>]

Получается, что на множестве комплексных чисел нельзя ввести привычные нам понятия «больше» или «меньше». Поскольку каждое число характеризуется двумя независимыми параметрами (действительной и мнимой частью), нет универсальной меры, нет отношения порядка.

  • Поменяли работу — на новой зарплата выше, но коллектив хуже. Что важнее?
  • Ушли из универа — теперь есть время на работу, но нет формального образования. И вновь: что важнее?

Модуль числа нам пригодится в следующем уроке. А вот комплексно-сопряжённые мы будем применять уже сейчас.

6. Умножение и деление комплексных чисел

Комплексные числа можно не только складывать и вычитать, но даже умножать и делить друг на друга.

6.1. Умножение

С умножением ничего особенного.

Определение. Пусть даны два комплексных числа: $_>=a+bi$ и $_>=c+di$. Тогда их можно умножить:

[begin _>cdot _> & =left( a+bi right)left( c+di right)= \ & =ac+bccdot i+adcdot i+bdcdot ^>= \ & =left( ac-bd right)+left( ad+bc right)cdot iend]

Как видим, произведение комплексных чисел вновь даёт комплексное число.

Как и в случае со сложением, не нужно учить эти формулы наизусть. Лучше просто потренироваться и понять сам механизм:

[begin left( 1-2i right)cdot left( 3+i right) & =3-6i+i-2^>= \ & =3-5i-2cdot left( -1 right)= \ & =5-5i end]

Достаточно решить 10—15 таких примеров — и никакие специальные формулы и определения вам больше не понадобятся. То же самое и с делением.

6.2. Деление

Финальный бросок — попробуем разделить одно комплексное число на другое. Разумеется, делитель не должен быть нулём, иначе частное не определено.

Саму формулу не нужно запоминать. Достаточно лишь отметить для себя, что мы умножили числитель и знаменатель дроби на комплексно-сопряжённое к знаменателю. Само деление можно выполнять напролом:

Тем не менее, даже после основательной тренировки умножение и особенно деление комплексных чисел остаётся трудоёмкой операцией, где можно допустить множество ошибок. Поэтому для таких операций (а также для кое-чего гораздо более серьёзного) математики придумали другую форму записи комплексных чисел — тригонометрическую. С ней мы и познакомимся на следующем уроке.:)

Комплексные числа

Изучение чисел традиционно начинается с натуральных чисел. Это числа вида то есть те числа, которые используются человеком для счёта. В арифметике над натуральными числами вводятся операции сложения, вычитания, умножения и деления. Но операции вычитания и деления оказываются не всегда возможными для натуральных чисел. Чтобы этого избежать, были придуманы целые числа и рациональные числа.

Потребность измерять величины и проводить операции вроде извлечения корня привела к расширению множества рациональных чисел — к нему добавились иррациональные числа. Рациональные и иррациональные числа вместе образовали множество действительных чисел.

Наконец, желание всегда получать решение алгебраических уравнений (квадратных, кубических и т. д.) привело к появлению комплексных чисел.

Определение комплексного числа. Операции над комплексными числами.

Определение. Комплексными числами называются выражения вида , в которых и — некоторые действительные числа, а — символ, называемый мнимой единицей.

Множество комплексных чисел обычно обозначается (от слова complex).
Введём понятие равенства и операции сложения и умножения для комплексных чисел.

  1. Два комплексных числа и равны тогда и только тогда, когда и .
  2. Суммой комплексных чисел и называется число

Обычно комплексное число обозначают одной буквой, чаще всего (пишут ). При этом число называется действительной частью числа и обозначается (от слова real); пишут или . Число называется мнимой частью числа и обозначается (от слова imagine); пишут .

Множество комплексных чисел содержит в себе множество действительных чисел: любое действительное число можно представить в виде . Числа вида называются чисто мнимыми и обозначаются .

Пользуясь формулой (2), найдём

Заметим, что формулу (2) запоминать не нужно, так как она легко получается, если в произведении двучленов и заменить по формуле (3) на :

Пример 1. Найти сумму и произведение комплексных чисел и
Решение. Пользуясь формулой (1), находим сумму:

Учитывая, что , находим произведение:

Свойства операций над комплексными числами

  1. Коммутативность сложения: для любых комплексных чисел и .
  2. Ассоциативность сложения: для любых комплексных чисел , и .
  3. для любого комплексного числа .
  4. Для любых комплексных чисел и существует комплексное число такое, что . Это число называется разностью комплексных чисел и и обозначается .
  5. Коммутативность умножения: для любых комплексных чисел и .
  6. Ассоциативность умножения: для любых комплексных чисел , и .
  7. Закон дистрибутивности: для любых комплексных чисел , и .
  8. для любого комплексного числа .
  9. Для любых двух комплексных чисел и , , существует число такое, что . Это число называется частным комплексных чисел и и обозначается .

Все эти свойства напрямую следуют из определения операций над комплексными числами. Докажем здесь свойство 9.

Пусть , , (неравенство числа нулю означает, что хотя бы одно из чисел и не равно нулю), . Тогда равенство записывается так: Приравнивая действительные и мнимые части, получаем, что числа и удовлетворяют системе уравнений:

Эта система уравнений имеет единственное решение

Эту формулу можно не запоминать. Далее мы покажем более простой способ нахождения частного двух комплексных чисел.

Определение. Пусть задано комплексное число . Число называется комплексно сопряжённым числу и обозначается .

Произведение комплексных чисел — всегда действительное число, большее нуля. Действительно, пусть , тогда

Покажем теперь простой способ для нахождения частного двух комплексных чисел.

Здесь мы умножили числитель и знаменатель дроби на число, комплексно сопряжённое знаменателю. В результате в знаменателе получилось действительное число.

Решение. Находим разность:

Частное находим, домножая числитель и знаменатель дроби на число, комплексно сопряжённое знаменателю:

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ mathbb $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = sqrt $, числа $ a,b in mathbb $ вещественные.

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ mathbb subset mathbb $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^ $
  3. Тригонометрическая $ z = |z|cdot(cos(varphi)+isin(varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

комплексные числа

Видим, что $ a,b in mathbb $ расположены на соответствующих осях плоскости.

Комплексное число $ z = a+ib $ представляется в виде вектора $ overline $.

Аргумент обозначается $ varphi $.

Модуль $ |z| $ равняется длине вектора $ overline $ и находится по формуле $ |z| = sqrt $

Аргумент комплексного числа $ varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Операции

Над комплексными числами можно проводить различные операции, а именно:

  • Складывать и вычитать
  • Умножать и делить
  • Извлекать корни и возводить в степень
  • Переводить из одной формы в другую

Для нахождения суммы и разности складывается и вычитаются только соответствующие друг другу члены. Мнимая часть только с мнимой, а действительная только с действительной:

$$ z_1 + z_2 = (a_1+ib_1) + (a_2+ib_2) = (a_1 + a_2)+i(b_1 + b_2) $$

$$ z_1 — z_2 = (a_1+ib_1) — (a_2+ib_2) = (a_1 — a_2)+i(b_1 — b_2) $$

Умножение в алгебраической форме:

$$ z_1 cdot z_2 = (a_1+ib_1) cdot (a_2+ib_2) = (a_1 a_2 — b_1 b_2)+i(a_1 b_2 + a_2 b_1) $$

Умножение в показательной форме:

Деление в алгебраической форме:

Деление в показательной форме:

Для возведения в степень необходимо умножить комплексное число само на себя необходимое количество раз, либо воспользоваться формулой Муавра:

$$ z^n = |z|^n(cos nvarphi+isin nvarphi) $$

Для извлечения корней необходимо также воспользоваться формулой Муавра:

Так же теория комплексных чисел помогает находить корни многочленов. Например, в квадратном уравнении, если $ D

Рассмотрим на практике комплексные числа: примеры с решением.

Примеры с решением

Для начала приступим к нахождению модуля комплексного числа:

Осталось найти аргумент:

Теперь составляем тригонометрическую запись комплексного числа, указанного в условии примера:

Тут же можно записать показательную форму:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Вычислить сумму и разность заданных комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

$$ z_1 + z_2 = (3+i) + (5-2i) = (3+5)+(i-2i) = 8 — i $$

Аналогично выполним вычитание чисел:

$$ z_1 — z_2 = (3+i) — (5-2i) = (3-5)+(i+2i) = -2 + 3i $$

Выполнить умножение и деление комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

$$ z_1 cdot z_2 = (3+i) cdot (5-2i) = $$

Просто на просто раскроем скобки и произведем приведение подобных слагаемых, так же учтем, что $ i^2 = -1 $:

$$ = 15 — 6i + 5i -2i^2 = 15 — i — 2cdot(-1) = $$

$$ = 15 — i + 2 = 17 — i $$

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Для возведения в квадрат достаточно умножить число само на себя:

$$ z^2 = (3+3i)^2 = (3+3i)cdot (3+3i) = $$

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

$$ =9 + 9i + 3icdot 3 + 9i^2 = 9 + 18i — 9 = 18i $$

Получили ответ, что $$ z^2 = (3+i)^2 = 18i $$

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ varphi = arctg frac = arctg(1) = frac $$

Записываем в тригонометрическом виде:

Возводим в степень $ n = 7 $:

Преобразуем в алгебраическую форму для наглядности:

$$ = 3^7 sqrt^6 (1-i) = 3^7 cdot 8(1-i) = $$

$$ = 2187 cdot 8 (1-i) = 17496(1-i) $$

$$ z^2 = (3+i)^2 = 18i $$ $$ z^7 = 17496(1-i) $$

Представим число в тригонометрической форме. Найдем модуль и аргумент:

$$ varphi = arctg frac +pi = arctg 0 + pi = pi $$

Получаем: $$ z = (cos pi + isin pi) $$

Используем знакомую формулу Муавра для вычисления корней любой степени:

Так как степень $ n = 3 $, то по формуле $ k = 0,1,2 $:

Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4cdot 1 cdot 2 = 4-8 = -4 $$

Заметим, что $ sqrt = 2sqrt = 2i $ и продолжим вычисление:

Получили комплексно-сопряженные корни:

$$ x_1 = -1 — i; x_2 = -1 — i $$

Как видите любой многочлен можно решить благодаря комплексным числам.

В статье «Комплексные числа: примеры с решением» было дано определение, основные понятия, формы записи, алгебраические операции и решение практических примеров.

Комплексные числа

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Множество комплексных чисел является расширением множества вещественных чисел, поскольку множество вещественных чисел содержится в нём в виде пар (x, 0) .

Комплексные числа, заданные парами (0, y) , называют чисто мнимыми числами .

Для комплексных чисел существует несколько форм записи: алгебраическая форма записи, тригонометрическая форма записи и экспоненциальная (показательная) форма записи .

Алгебраическая форма — это такая форма записи комплексных чисел, при которой комплексное число z, заданное парой вещественных чисел (x, y) , записывается в виде

z = x + i y . (1)

где использован символ i , называемый мнимой единицей .

Число x называют вещественной (реальной) частью комплексного числа z = x + i y и обозначают Re z .

Число y называют мнимой частью комплексного числа z = x + i y и обозначают Im z .

Комплексные числа, у которых Im z = 0 , являются вещественными числами .

Комплексные числа, у которых Re z = 0 , являются чисто мнимыми числами .

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Умножение комплексных чисел z1 = x1 + i y1 и z2 = x2 + i y2 , так же, как и операции сложения и вычитания, осуществляется по правилам умножения двучленов (многочленов), однако при этом учитывается важнейшее равенство, имеющее вид:

i 2 = – 1 . (2)

По этой причине

Комплексно сопряженные числа

Два комплексных числа z = x + iy и у которых вещественные части одинаковые, а мнимые части отличаются знаком, называются комплексно сопряжёнными числами .

Операция перехода от комплексного числа к комплексно сопряженному с ним числу называется операцией комплексного сопряжения , обозначается горизонтальной чертой над комплексным числом и удовлетворяет следующим свойствам:

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

Для произвольного комплексного числа z справедливо равенство:

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

Замечание . Если z — вещественное число, то его модуль | z | равен его абсолютной величине.

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

Назовем рассматриваемую плоскость комплексной плоскостью , и будем представлять комплексное число z = x + i y радиус–вектором с координатами (x , y).

Комплексные числа изображение комплексных чисел радиус-векторами координатной плоскости

Назовем ось абсцисс Ox вещественной осью , а ось ординат Oy – мнимой осью .

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z .

Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z .

Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).

Комплексные числа аргумент комплексного числа

Считается, что комплексное число нуль аргумента не имеет.

Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента , обозначаемое arg z и удовлетворяющее неравенствам:

Тогда оказывается справедливым равенство:

Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ , то мы можем найти вещественную и мнимую части по формулам

Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y , то модуль этого числа, конечно же, определяется по формуле

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Действия над комплексными числами

Над комплексными числами можно выполнять следующие действия:

  • сложение;
  • вычитание;
  • умножение;
  • деление;
  • возведение комплексного числа в степень;
  • извлечение корня $n$—й степени из комплексного числа.

Операции сложения и вычитания выполняются для чисел, представленных в алгебраической форме.

Умножение, деление и возведение в степень выполняются для чисел, представленных в любой форме записи.

Извлечение корня выполняется для чисел, представленных в тригонометрической форме.

Запись некоторого комплексного числа $z$ в виде $z=a+bi$ называется алгебраической формой записи (или алгебраической записью) комплексного числа. При этом:

  • $a$ — вещественная (действительная) часть;
  • $b$ — мнимая часть.

Запись некоторого комплексного числа $z$ в виде $z=rcdot (cos varphi +isin varphi )$ называется тригонометрической формой записи, где число $r$ — модуль комплексного числа $z$, определяемый по формуле $r=|z|=|a+bi|=sqrt +b^ > $, $varphi $ — аргумент комплексного числа $z$, определяемый по формуле $varphi =arctgfrac $.

Запись некоторого комплексного числа $z$ в виде $z=rcdot e^ $ называется показательной формой записи, где число $r$ — модуль комплексного числа $z$, определяемый по формуле $r=|z|=|a+bi|=sqrt +b^ > $, $varphi $ — аргумент комплексного числа $z$, определяемый по формуле $varphi =arctgfrac $.

При необходимости извлечения корня из комплексного числа, записанного в показательной форме, необходимо предварительно привести его к тригонометрической форме представления.

Готовые работы на аналогичную тему

Сумма комплексных чисел

Суммой двух заданных комплексных чисел $z_ =a_ +b_ i$ и $z_ =a_ +b_ i$ является комплексное число, которое определяется равенством [z_ +z_ =(a_ +b_ i)+(a_ +b_ i)=(a_ +a_ )+(b_ +b_ )cdot i.]

Разность комплексных чисел

Разностью двух заданных комплексных чисел $z_ =a_ +b_ i$ и $z_ =a_ +b_ i$ является комплексное число, которое определяется равенством [z_ -z_ =(a_ +b_ i)-(a_ +b_ i)=(a_ -a_ )+(b_ -b_ )cdot i.]

Выполнить действия: 1) $z_ +z_ $2) $z_ -z_ $ для заданных комплексных чисел $z_ =2+4i$ и $z_ =1-3i$.

1) По определению имеем: $z_ +z_ =(a_ +a_ )+(b_ +b_ )cdot i$

Для исходных чисел получаем:

2) По определению имеем: $z_ -z_ =(a_ -a_ )+(b_ -b_ )cdot i$

Для исходных чисел получаем:

Произведение комплексных чисел

Произведением двух заданных комплексных чисел $z_ =a_ +b_ i$ и $z_ =a_ +b_ i$ является комплексное число, которое получается перемножением данных чисел по правилам алгебры с учетом того, что $i^ =-1$.

Произведением двух заданных комплексных чисел $z_ =r_ cdot (cos varphi _ +isin varphi _ )$ и $z_ =r_ cdot (cos varphi _ +isin varphi _ )$ является комплексное число, которое определяется равенством

[z_ cdot z_ =r_ cdot r_ cdot [cos (varphi _ +varphi _ )+isin (varphi _ +varphi _ )].]

Выполнить умножение комплексных чисел представленных в алгебраической форме:

Для исходных чисел, учитывая определение, получаем:

[1cdot 2+3cdot 2i+1cdot (-2i)+3icdot (-2i)=2+6i-2i-6i^ =2+4i+6=8+4i]

Выполнить умножение комплексных чисел представленных в тригонометрической форме:

$z_ =3sqrt cdot (cos frac +icdot sin frac )$ и $z_ =2cdot (cos pi +icdot sin pi )$.

1) По определению имеем: $z_ cdot z_ =r_ cdot r_ cdot [cos (varphi _ +varphi _ )+isin (varphi _ +varphi _ )]$

Для исходных чисел получаем:

[begin cdot z_ =left(3sqrt cdot (cos frac +icdot sin frac )right)cdot left(2cdot (cos pi +i cdot sin pi )right)=6cdot sqrt cdot left[cos left(frac +pi right)+icdot sin left(frac +pi right)right]=> \ <=6sqrtcdot left(cos frac<3pi > +icdot sin frac<3pi > right)> end]

Частное комплексных чисел

Частным двух заданных комплексных чисел $z_ =r_ cdot (cos varphi _ +isin varphi _ )$ и $z_ =r_ cdot (cos varphi _ +i sin varphi _ )$ является комплексное число, которое определяется равенством

[z_ div z_ =frac cdot [cos (varphi _ -varphi _ )+isin (varphi _ -varphi _ )].]

Чтобы выполнить операцию деления комплексных чисел, представленных в алгебраической форме, необходимо:

  • представить запись операции деления в виде дроби;
  • числитель и знаменатель дроби умножить на число сопряженное знаменателю;
  • привести полученное выражение к алгебраической записи.

Выполнить деление комплексных чисел, представленных в алгебраической форме:

Для исходных чисел получаем:

Выполнить деление комплексных чисел представленных в тригонометрической форме:

$z_ =3cdot left(cos frac<2pi > +icdot sin frac<2pi > right)$ и $z_ =2cdot (cos 2pi +icdot sin 2pi )$.

По определению имеем: $z_ div z_ =frac cdot [cos (varphi _ -varphi _ )+isin (varphi _ -varphi _ )]$

Для исходных чисел получаем:

[begin > > =3cdot left(cos frac<2pi > +icdot sin frac<2pi > right)div left(2cdot (cos 2pi +icdot sin 2pi )right)=frac cdot left[cos left(frac<2pi > -2pi right)+icdot sin left(frac<2pi > -2pi right)right]=> \ <= frac cdot left(cos left(-frac<4pi > right)+icdot sin left(-frac<4pi > right)right)> end]

Степерь комплексного числа

Степенью порядка $n$ некоторого комплексного числа $z=rcdot (cos varphi +isin varphi )$ является комплексное число, которое определяется равенством

[z^ =r^ cdot (cos nvarphi +isin nvarphi ).]

Данная формула называется формулой Муавра.

Выполнить действие $z^ $, где $z=3cdot left(cos frac +icdot sin frac right)$.

По формуле Муавра получим:

[z^ =3^ cdot left(cos left(3cdot frac right)+icdot sin left(3cdot frac right)right)=27cdot left(cos frac <3pi > +icdot sin frac<3pi > right).]

Выполнить действие $z^ $, где $z=1cdot left(cos frac +icdot sin frac right)$.

По формуле Муавра получим:

[z^ =1^ cdot left(cos left(100cdot frac right)+icdot sin left(100cdot frac right)right)=1cdot left(cos 50pi +icdot sin 50pi right)=1cdot left(cos 0+icdot sin 0right).]

Корень комплексного числа

Корнем $n$-й степени некоторого комплексного числа $z=rcdot (cos varphi +isin varphi )$ является комплексное число, которое определяется равенством

Выполнить действие $sqrt[] $, где $z=4cdot (cos pi +icdot sin pi )$.

Для $k=0$ получаем: $w_ =sqrt[] =sqrt[] cdot left(cos frac +icdot sin frac right)$.

Для $k=1$ получаем: $w_ =sqrt[] =sqrt[] cdot left(cos frac +icdot sin frac right)=sqrt[] cdot left(cos pi +icdot sin pi right)$.

Для $k=2$ получаем: $w_ =sqrt[] =sqrt[] cdot left(cos frac +icdot sin frac right)=sqrt[] cdot left(cos frac<5pi > +icdot sin frac<5pi > right)$.

Комплексные числа и операции с ними

Известно, что область определения некоторых функций на множестве вещественных чисел ограничена. Например функция определена для , аналогично можно вспомнить, что функция определена для , а функция определена для .

Однако, ограниченная область определения функций на множестве вещественных чисел не означает, что , или не имеют смысла. Ограниченная область определения функций на множестве вещественных чисел говорит лишь о том, что не может быть представлено вещественным числом. Действительно, среди вещественных чисел не найти такого числа , квадрат которого был бы равен .

При решении квадратных уравнений часто возникает ситуация, когда дискриминант отрицательный. В этом случае это означает что парабола не пересекает прямую абсцисс ни в одной точке. Другими словами, корни квадратного уравнения не существуют среди вещественных значений и их также надо искать за пределами вещественных чисел.

Все бесконечное множество вещественных чисел можно представить в виде одной числовой прямой (смотри рисунок 1), на которой мы можем откладывать рациональные и иррациональные вещественные числа. Но на этой прямой нет числа , значит его надо искать вне числовой прямой. Таким образом мы должны расширить множество вещественных чисел до множества в котором значения , или уже не бессмысленны, а являются такими же обычными числами в этом расширенном множестве, как на множестве вещественных чисел.

Естественным расширением числовой прямой является плоскость, которую называют комплексной плоскостью. Числовая прямая вещественных чисел и ее расширение до комплексной плоскости показано на рисунке 1. Любая точка на комплексной плоскости определяет одно комплексное число. Например на рисунке 1 показано число .

Значение вещественного числа однозначно определяет его позицию на числовой прямой, однако для определения позиции на плоскости одного числа недостаточно.

Для «навигации» по комплексной плоскости вводятся две прямые и , которые пересекаются в начале координат. Прямая это числовая прямая, называемая реальной осью, на которой лежат все вещественные числа. Прямая называется мнимой осью и она перпендикулярна реальной оси . Оси и делят комплексную плоскость на четверти, как это показано на рисунке 1.

Любая точка комплексной плоскости задается двумя координатами и по осям и соответственно. При этом само комплексное число можно записать как , где называется реальной частью и задает координату точки комплексной плоскости на вещественной прямой , а называется мнимой частью и задает координату точки комплексной плоскости на мнимой оси .

Для того чтобы отделить одну координату от другой (реальную и мнимую части) вводят число , называемое мнимой единицей. Это так раз то число, которого не существует на множестве действительных чисел. Оно обладает особым свойством: . Тогда комплексное число может не только перемещаться по вещественной прямой вправо и влево, но и двигаться по комплексной плоскости потому что мы добавили ему слагаемое с мнимой единицей .

Мнимую единицу в математической литературе принято обозначать как , но в технике буква уже закреплена за обозначением электрического тока, поэтому чтобы избежать путаницы мы будем обозначать мнимую единицу буквой .

Если и , тогда число является действительным и располагается на реальной оси .

Если и , тогда число является чисто мнимым и располагается на мнимой оси .

Если и , тогда число располагается в одной из четвертей комплексной плоскости.

Представление комплексного числа как называют алгебраической формой записи. Если из начала координат комплексной плоскости к точке восстановить вектор (смотри рисунок 1), то можно вычислить длину этого вектора как

— неотрицательное вещественное число характеризующее длину вектора и называется модулем комплексного числа. При этом сам вектор комплексного числа повернут относительно реальной оси на некоторый угол , называемый фазой. Фаза комплексного числа может быть положительной или отрицательной, в зависимости от того в каком направлении относительно оси отсчитывать угол. Если угол поворота вектора на комплексной плоскости отсчитывать против часовой стрелки (как это показано на рисунке 1), то фаза будет принимать положительные значения, а если по часовой — то отрицательные.

Связь реальной и мнимой частей комплексного числа с его амплитудой и фазой представлено следующим выражением:

Связь угла поворота вектора комплексного числа с реальной и мнимой частью комплексного числа, представленного в алгебраической форме:

Горин Павел/ автор статьи

Павел Горин — психолог и автор популярных статей о внутреннем мире человека. Он работает с темами самооценки, отношений и личного роста. Его экспертность основана на практическом консультировании и современных психологических подходах.

Понравилась статья? Поделиться с друзьями:
psihologiya-otnosheniy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: