Общие сведения о сетевых технологиях
Сложность сетевых структур и разнообразие телекоммуникационных устройств, выпускаемых различными фирмами, привели к необходимости стандартизации как устройств, так и процедур обмена данными между пользователями. Международная организация стандартов ( International Standards Organization – ISO ) создала эталонную модель взаимодействия открытых систем ( Open System Interconnection reference model – OSI ), которая определяет концепцию и методологию создания сетей передачи данных. Модель описывает стандартные правила функционирования устройств и программных средств при обмене данными между узлами (компьютерами) в открытой системе . Открытая система состоит из программно-аппаратных средств, способных взаимодействовать между собой при использовании стандартных правил и устройств сопряжения (интерфейсов).
Модель ISO / OSI включает семь уровней. На рис. 1.5 показана модель взаимодействия двух устройств: узла источника (source) и узла назначения ( destination ). Совокупность правил, по которым происходит обмен данными между программно-аппаратными средствами, находящимися на одном уровне, называется протоколом. Набор протоколов называется стеком протоколов и задается определенным стандартом. Взаимодействие между уровнями определяется стандартными интерфейсами.

Взаимодействие соответствующих уровней является виртуальным, за исключением физического уровня, на котором происходит обмен данными по кабелям, соединяющим компьютеры. На рис. 1.5 приведены также примеры протоколов, управляющих взаимодействием узлов на различных уровнях модели OSI . Взаимодействие уровней между собой внутри узла происходит через межуровневый интерфейс, и каждый нижележащий уровень предоставляет услуги вышележащему.
Виртуальный обмен между соответствующими уровнями узлов A и B ( рис. 1.6) происходит определенными единицами информации. На трех верхних уровнях – это сообщения или данные (Data), на транспортном уровне – сегменты (Segment), на сетевом уровне – пакеты (Packet), на канальном уровне – кадры (Frame ) и на физическом – последовательность битов.
Для каждой сетевой технологии существуют свои протоколы и свои технические средства, часть из которых имеет условные обозначения, приведенные на рис. 1.5. Данные обозначения введены фирмой Cisco и стали общепринятыми. Среди технических средств физического уровня следует отметить кабели, разъемы, повторители сигналов (repeater), многопортовые повторители или концентраторы (hub), преобразователи среды (transceiver), например, преобразователи электрических сигналов в оптические и наоборот. На канальном уровне – это мосты (bridge), коммутаторы (switch). На сетевом уровне – маршрутизаторы (router). Сетевые карты или адаптеры ( Network Interface Card – NIC ) функционируют как на канальном, так и на физическом уровне, что обусловлено сетевой технологией и средой передачи данных .

При передаче данных от источника к узлу назначения подготовленные на прикладном уровне передаваемые данные последовательно проходят от самого верхнего, Прикладного уровня 7 узла источника информации до самого нижнего – Физического уровня 1, затем передаются по физической среде узлу назначения, где последовательно проходят от нижнего уровня 1 до уровня 7.
Самый верхний, Прикладной уровень (Application Layer) 7 оперирует наиболее общей единицей данных – сообщением. На этом уровне реализуется управление общим доступом к сети, потоком данных, сетевыми службами, такими, как FTP, TFTP, HTTP, SMTP, SNMP и др.
Представительский уровень (Presentation Layer) 6 изменяет форму представления данных. Например, передаваемые с уровня 7 данные преобразуются в общепринятый формат ASCII . При приеме данных происходит обратный процесс. На уровне 6 также происходит шифрация и сжатие данных.
Сеансовый уровень (Session Layer) 5 устанавливает сеанс связи двух конечных узлов (компьютеров), определяет, какой компьютер является передатчиком, а какой приемником, задает для передающей стороны время передачи.
Транспортный уровень (Transport Layer) 4 делит большое сообщение узла источника информации на части, при этом добавляет заголовок и формирует сегменты определенного объема, а короткие сообщения может объединять в один сегмент. В узле назначения происходит обратный процесс. В заголовке сегмента задаются номера порта источника и назначения, которые адресуют службы верхнего прикладного уровня для обработки данного сегмента. Кроме того, транспортный уровень обеспечивает надежную доставку пакетов. При обнаружении потерь и ошибок на этом уровне формируется запрос повторной передачи, при этом используется протокол TCP. Когда необходимость проверки правильности доставленного сообщения отсутствует, то используется более простой и быстрый протокол дейтаграмм пользователя ( User Datagram Protocol – UDP ).
Сетевой уровень (Network Layer) 3 адресует сообщение, задавая единице передаваемых данных (пакету) логические сетевые адреса узла назначения и узла источника ( IP-адреса ), определяет маршрут, по которому будет отправлен пакет данных, транслирует логические сетевые адреса в физические, а на приемной стороне – физические адреса в логические. Сетевые логические адреса принадлежат пользователям.
Канальный уровень (Data Link) 2 формирует из пакетов кадры данных (frames). На этом уровне задаются физические адреса устройства-отправителя и устройства-получателя данных. Например, физический адрес устройства может быть прописан в ПЗУ сетевой карты компьютера. На этом же уровне к передаваемым данным добавляется контрольная сумма , определяемая с помощью алгоритма циклического кода . На приемной стороне по контрольной сумме определяют и по возможности исправляют ошибки.
Физический уровень (Physical) 1 осуществляет передачу потока битов по соответствующей физической среде (электрический или оптический кабель , радиоканал ) через соответствующий интерфейс . На этом уровне производится кодирование данных, синхронизация передаваемых битов информации.
Протоколы трех верхних уровней являются сетенезависимыми, три нижних уровня являются сетезависимыми. Связь между тремя верхними и тремя нижними уровнями происходит на транспортном уровне.
Важным процессом при передаче данных является инкапсуляция ( encapsulation ) данных. Передаваемое сообщение, сформированное приложением, проходит три верхних сетенезависимых уровня и поступает на транспортный уровень , где делится на части и каждая часть инкапсулируется (помещается) в сегмент данных ( рис. 1.7). В заголовке сегмента содержится номер протокола прикладного уровня, с помощью которого подготовлено сообщение, и номер протокола, который будет обрабатывать данный сегмент.

На сетевом уровне сегмент инкапсулируется в пакет данных, заголовок ( header ) которого содержит, кроме прочего, сетевые (логические) адреса отправителя информации (источника) – Source Address ( SA ) и получателя (назначения) – Destination Address ( DA ). В данном курсе – это IP -адреса.
На канальном уровне пакет инкапсулируется в кадр или фрейм данных, заголовок которого содержит физические адреса узла передатчика и приемника, а также другую информацию. Кроме того, на этом уровне добавляется трейлер (концевик) кадра, содержащий информацию, необходимую для проверки правильности принятой информации. Таким образом, происходит обрамление данных заголовками со служебной информацией, т. е. инкапсуляция данных.
Название информационных единиц на каждом уровне, их размер и другие параметры инкапсуляции задаются согласно протоколу единиц данных ( Protocol Data Unit – PDU ). Итак, на трех верхних уровнях – это сообщение (Data), на Транспортном уровне 4 – сегмент (Segment), на Сетевом уровне 3 – пакет (Packet), на Канальном уровне 2 – кадр (Frame), на Физическом Уровне 1 – последовательность бит.
Помимо семиуровневой OSI модели на практике применяется четырехуровневая модель TCP / IP ( рис. 1.8).

Прикладной уровень модели TCP / IP по названию совпадает с названием модели OSI , но по функциям гораздо шире, поскольку охватывает три верхних сетенезависимых уровня (прикладной, представительский и сеансовый). Транспортный уровень обеих моделей и по названию, и по функциям одинаков. Сетевой уровень модели OSI соответствует межсетевому ( Internet ) уровню модели TCP / IP , а два нижних уровня (канальный и физический) представлены объединенным уровнем доступа к сети ( Network Access ).
Ниже в таблице 1.1 приведены обобщенные сведения об основной информации, добавляемой в заголовках сообщений на разных уровнях OSI -модели.
| Физический уровень | Канальный уровень | Сетевой уровень | Транспортный уровень | Верхние уровни |
| Частотно-временные параметры и синхронизация | Физические адреса источника и назначения | Логические адреса источника и назначения | Номера порта источника и назначения | Сопряжение пользователей с сетью |
На транспортном уровне в заголовке сегмента задаются номера портов приложений источника и назначения. Номера портов адресуют приложения или сервисы прикладного уровня, которые создавали сообщение и будут его обрабатывать на приемной стороне. Например, сервер электронной почты с номерами портов 25 и 110 позволяет посылать e-mail сообщения и принимать их, номер порта 80 адресует веб-сервер .
Для обмена сообщениями помимо номеров портов на сетевом уровне в заголовке пакета необходимо задать логические адреса источника и назначения. К логическим адресам относятся, например, IP -адреса пользователей. В документации, используемой в настоящее время, версии IPv4 адреса IP отображаются в десятичной форме в виде четырех групп чисел. Каждая группа может содержать числа от 0 до 255. Группы разделены между собой точками, например 192.168.10.21, 172.16.250.17, 10.1.10.122.
В дополнение к логическим адресам на канальном уровне в заголовке кадра задаются физические адреса устройства-источника и устройства-назначения. Наиболее широко распространенной сетевой технологией канального уровня в настоящее время является Ethernet или ее модификации ( Fast Ethernet , Gigabit Ethernet , 10Gigabit Ethernet ). При этом в качестве физических адресов используются МАС-адреса ( Media Access Control ). В документации МАС-адреса представлены в виде 12 шестнадцатеричных чисел, например, 00-05-А8-69-CD-F1. Тот же адрес может
быть представлен и в несколько другой форме 00:05:А8:69:CD:F1 или 0005.А869.CDF1. МАС-адреса компьютеров прошиты в ПЗУ сетевой карты.
Таким образом, тройная система адресации позволяет адресовать устройства, пользователей и программное обеспечение приложений.
Поскольку на трех нижних уровнях модели OSI функционируют аппаратно- программные средства , обработка сообщения проводится с высокой скоростью. На верхних же уровнях функционируют программные средства , что увеличивает время обработки (задержку). В вышеприведенных примерах ( рис. 1.5, рис. 1.6) два конечных узла взаимодействовали непосредственно между собой. Поэтому сформированное на узле- источнике сообщение последовательно проходило все семь уровней с 7 по 1, на что тратилось много времени. В реальных сетях сообщение от одного конечного узла до другого проходит через целый ряд промежуточных устройств, таких как коммутаторы и маршрутизаторы. Поэтому для снижения времени задержки (повышения быстродействия) на промежуточных устройствах сообщение обрабатывается средствами только трех или даже двух нижних уровней ( рис. 1.9).

Таким образом, Транспортный уровень , обеспечивающий надежность передачи данных, функционирует только на конечных узлах, что снижает задержку передачи сообщения по всей сети от одного конечного узла до другого. В приведенном примере ( рис. 1.9) протокол IP функционирует на всех узлах сети, а стек протоколов TCP / IP – только на конечных узлах.
Библиотека Интернет Индустрии I2R.ru
Сегодня, в период стремительного взлета информационных технологий, одной из основных движущих сил прогресса является стремление к объединению, интеграции отдельных единиц оборудования и целых компьютерных систем. Корпоративные сети охватывают континенты, Всемирная паутина оплела весь земной шар. Главным орудием такой интеграции, бесспорно, являются сетевые технологии. Развитие сетевых технологий шло постепенно, по мере формирования микроэлектронной базы и решения других сопутствующих проблем. Некоторые из направлений уже успели умереть или близки к этому, другие — приспособились, трансформировались, третьи — бурно и успешно развиваются. Данный цикл статей предназначен для тех, кто хочет понять, КАК все это работает. Речь не о том, плохо или хорошо, быстро или медленно, а в том, что происходит внутри всех этих ящиков, коробок и коробочек. По аналогии с водителем, который умеет не только завести двигатель, но и предпринять меры для надежной работы (сменить масло, подрегулировать зазоры и т.д.), а также диагностировать простейшие неисправности (пересосал, провода подмокли). Можно, конечно, просто позвонить по сотовому на сервис, но одним не позволяет гордость, а другим — финансы.
Как и любое освоение того или иного предмета, изучение сетевых технологий начинается с базовых понятий, необходимых для дальнейших шагов. Как ребенок учит названия вещей и действий, с которыми он будет иметь дело в большом мире, так и мы должны знать названия и содержание тех понятий, которыми будем оперировать. «Теория суха», — сказал один классик, а другой добавил: «Нет ничего практичнее хорошей теории».
Эталонная модель OSI
В основе сетевых технологий лежит эталонная модель OSI (Open System Interconnection, взаимодействие открытых систем). Она подразделяет работающее оборудование и процессы, происходящие при объединении компьютерных сетей, согласно логике их работы. Каждый из уровней выполняет свою специфическую функцию, тем самым облегчая проектирование и понимание всей системы в целом. При сетевом обмене каждый из уровней на одном компьютере сообщается со своим «коллегой» на другом компьютере. Делается это не напрямую, а путем запроса на обслуживание у нижележащего. Уровни могут иметь одинаковую реализацию (пример — сеть на основе Windows) или разную (UNIX-хост и ПК с модемом и Web-браузером). Самое главное — они идентично работают, демонстрируя полное взаимопонимание. Самому нижнему уровню свалить работу не на кого, поэтому физическая реализация должна совпадать (по крайней мере, на уровне одного сегмента сети). В целом все напоминает сообщение по почте, когда отправитель и адресат обмениваются информацией, не вступая в непосредственный контакт друг с другом, а запрашивая услуги почты, которая, в свою очередь, запрашивает услуги у транспортных компаний.
Как принимающий запрос (оказывающий услугу) уровень понимает, что от него требуется? Для этого предназначена дополнительная
информация, называемая заголовком и помещаемая перед полезной информацией, которую следует передать. В некоторых случаях, но не всегда, добавляется еще и концевик. Служебные пакеты, например запрос о ближайшем сервере, могут состоять из одного заголовка (и, возможно, концевика). Например, уровень 4 добавляет к сообщению, полученному сверху, свой заголовок и передает все это вниз. Уровень 3 добавляет свой заголовок, и теперь данными уже является и то, что получил номер 4, и заголовок, который он добавил. Таким образом, короткое сообщение, пройдя все уровни сверху донизу, может вырасти во много раз (причем чем меньше сообщение, тем больше относительный рост). Компьютер-адресат разбирает сообщение, снимая заголовки и концевики, при этом каждый из уровней снимает свой заголовок и согласно содержащейся в нем информации передает данные выше.
На каждом из уровней единицы информации называются по-разному. На физическом уровне мельчайшая единица — бит. На канальном уровне информация объединена во фреймы (или пакеты). На сетевом уровне мы говорим о дейтаграммах. На транспортном уровне единицей измерения является сегмент. Прикладные уровни обмениваются сообщениями. Прямая параллель с файловой системой на диске: локальные изменения намагниченности — биты объединены в сектора, имеющие заголовки, сектора объединяются в блоки, а те, в свою очередь, в файлы, тоже имеющие заголовки, содержащие служебную информацию.
Важно понимать, что эталонная модель не является чем-то реальным, обеспечивающим связь. Сама по себе она не заставляет коммуникации работать, но служит лишь для протоколов. Протоколом мы будем считать набор спецификаций, согласно которым происходит воплощение в жизнь одного или нескольких уровней OSI. Спецификации протоколов разрабатываются стандартизирующими организациями либо производителями оборудования. Многие разработанные производителями протоколы оказываются настолько успешными, что применяются не только разработчиками, но и другими фирмами, становясь стандартом де-факто. Впоследствии они часто утверждаются в качестве стандарта де-юре.
Уровень 1 — физический, который, как следует из названия, определяет механические и электрические параметры среды передачи, интерфейсных плат, соединителей, а также способы помещения информации в среду передачи и извлечения ее оттуда. Спецификации физического уровня определяют тип разъема и назначение ножек, уровни сигналов, скорость передачи и т.д. Примеры спецификаций физического уровня — RS-232, RS-449.
Уровень 2 — канальный, формирующий последовательности пакетов или фреймов из битов, получаемых от физического уровня. Грубой аналогией может служить телеграфный аппарат, преобразующий последовательность точек и тире в буквы национального алфавита. Здесь также осуществляется управление доступом к передающей среде, разделяемой всеми сетевыми устройствами, обнаруживается и корректируется часть ошибок. Как и большинство других уровней, канальный добавляет заголовок к передаваемой информации. В заголовке обычно содержится адрес (физический) приемника, адрес источника и, возможно, другая информация.
Уровень 3 — сетевой, заведует движением информации по сетям, состоящим из нескольких или многих сегментов. Для успешного решения этой задачи в протокол данного уровня вносится информация о логическом адресе источника и адресата пакета. При прохождении пакетов через узлы, соединяющие различные сети, эта информация анализируется и пакет пересылается к следующему узлу, принадлежащему уже к другому сегменту. Информация о том, куда пересылать пакет, может содержаться в таблицах устройства, выполняющего роль маршрутизатора, или вычисляться в реальном времени (что делается значительно реже). Таким образом, переходя от узла к узлу, пакеты путешествуют по сети. В функции сетевого уровня входят также идентификация и удаление «заблудившихся» пакетов, то есть таких, которые прошли через некоторое число узлов, но так и не попали к адресату.
Уровень 4 — транспортный, находится в самом центре эталонной модели. Он отвечает за гарантированную доставку данных, компенсируя ошибки, которые могли возникнуть при работе нижележащих уровней. «Гарантированная доставка» не означает, что данные попадут к адресату в любом случае: оборванный кабель, отстыкованный разъем, сгоревшая сетевая плата — все это «гарантирует недоставку». Однако надежные реализации протоколов транспортного уровня обеспечивают подтверждение успеха или неуспеха доставки, информируя вышележащие уровни, которые передают сообщение программному приложению, потребовавшему обслуживания. Гарантированная доставка осуществляется при помощи различных механизмов, в числе которых установление и разрыв соединения, подтверждение, контроль скорости потока.
Уровень 5 — сеансовый, отвечает за вызовы удаленных процедур (Remote Procedure Calls, RPC). Это специальный интерфейс, поддерживаемый соответствующими протоколами, когда вызов программной процедуры производится на одном компьютере, а выполнение — на другом, затем результат возвращается вызвавшей программе так, словно процедура была выполнена локально. Такой интерфейс практически прозрачен для локального ПО. Сеансовый уровень также контролирует установление, течение и завершение сеанса связи между взаимодействующими программами, о чем и говорит его название.
Уровень 6 — представительский, занимается преобразованиями формата, упаковкой, распаковкой, шифрованием и дешифрованием. Здесь осуществляется преобразование лишь формата, а не логической структуры данных. То есть уровень 6 представляет данные в том виде и формате, какой необходим для последнего из вышележащих уровней.
Последний уровень модели OSI называется прикладным. Он отвечает за интерфейс с пользователем и взаимодействие прикладных программ, выполняемых на взаимодействующих компьютерах. Предоставляемые услуги — электронная почта, идентификация пользователей, передача файлов и т.п.
Описанная очень кратко и упрощенно, эталонная модель, тем не менее, весьма полезна для лучшего понимания при дальнейшем изучении предмета.
Способы реализации физического уровня
Физический уровень состоит из кабелей и соединительных разъемов. Наиболее дешевым и, пожалуй, самым распространенным сегодня кабелем является неэкранированная витая пара (Unshielded Twisted Pair, UTP). Такой кабель состоит из четырех пар одножильных изолированных проводов, заключенных в оболочку из гибкого пластика. Провода каждой пары свиты между собой для повышения помехоустойчивости. С целью снижения взаимных наводок шаг скрутки у всех пар разный. Провода пар различаются цветом изоляции (оранжевый, зеленый, коричневый, голубой), причем один из них окрашен целиком, а другой — белого цвета, с нанесенной полоской цвета пары. Достаточно часто наносятся поперечные колечки, но при работе с кабелем они менее удобны (колечко пришлось обкусить, а следующее спрятано под оболочкой) и, кроме того, легко стираются. Цвета, шаг скрутки и диаметр проводов жестко нормированы. Для соединения применяются разъем RJ-
45, похожий на телефонный, но с восемью контактами. Кабель разделывается соответствующим образом и вставляется в разъем, который обжимается специальными щипцами. Надежный контакт достигается за счет того, что позолоченные контактные пластины врезаются в медные жилы проводов. Механическая прочность обеспечивается тем, что оболочка кабеля также обжимается. В большинстве случаев, а именно в сетях, реализованных по стандартам 10Base-T, 100Base-TX и 1000Base-T, используются только две пары из четырех — одна пара для приема и одна для передачи. Тем не менее для обеспечения совместимости рекомендуется разводить все четыре пары, то есть полностью выполнять все требования
Категории 5. Поскольку тип разъема во всех сетях, использующих кабель с витой парой, одинаков, при замене оборудования не понадобится проводить наиболее трудоемкую операцию — замену кабельной системы.
Кроме того, встречается и другой тип кабеля — так называемый тонкий коаксиальный кабель (Thin Coaxial Cable). Почему его называют тонким? Да просто потому, что тот кабель, с которого начиналась
история Ethernet, был гораздо толще, весьма неудобен при прокладке, стоил дороже, требовал специальных адаптеров для присоединения к плате, но позволял иметь большую длину сегмента. В настоящее время подобный кабель (толстый, Thick Ethernet) не используется. Так что в дальнейшем речь будет идти только о тонком кабеле, соответствующем спецификации RG58 A/U (это именно спецификация, определяющая волновое сопротивление, затухание и другие параметры, а не тип кабеля). Волновое сопротивление кабеля (параметр, показывающий отношение между амплитудами падающих волн напряжения и тока, определяется конструктивными характеристиками) составляет 50 Ом, что исключает его использование для присоединения домашнего телевизора к антенне. Вполне допустимо применение кабеля РК50 российского производства. Для соединения отрезков кабеля между собой используются BNC-разъемы, центральный контакт которых позолочен. Использование разъемов типа СР75 российского производства не рекомендуется, так как у них центральный контакт покрыт слоем серебра, которое имеет свойство со временем покрываться прочной черной пленкой сульфида серебра. Для присоединения к сетевым платам и другим устройствам используются T-коннекторы. Во избежание возникновения стоячих волн к обоим концам каждого из сегментов присоединяется терминатор, представляющий собой BNC-разъем, не имеющий отверстия для подключения кабеля и с помещенным внутри резистором сопротивлением 50 Ом. Для соединения отдельных отрезков кабеля между собой с целью удлинения без соединения с сетевым оборудованием используются специальные соединители, напоминающие T-коннекторы, но без гнезда для подключения к сетевой плате.
Следующим важным и активно развивающимся типом среды передачи является оптоволокно. При этой технологии передача информации происходит посредством световых импульсов. Для обеспечения приемлемой дальности при разумной мощности сигнала свет излучается внутрь световода, который направляет его к точке доставки. Световод изготовляется из оптически прозрачного материала (пластик, стекло, кварц) и представляет собой тонкое волокно, у которого коэффициент преломления изменяется по диаметру таким образом, чтобы отклонившийся к краю луч возвращался обратно к центру. Достоинства: большая дальность (до 40 км), устойчивость к электромагнитным помехам. Недостатки: высокая стоимость и сложность монтажа, особенно соединения кабеля. Для достижения приемлемых потерь размеры оптических разъемов выдерживаются с прецизионной точностью, а для сращивания кабеля используется специальная, также прецизионная аппаратура. В настоящее время оптоволоконная технология для локальных сетей все еще остается экзотикой, применяемой для связи высокопроизводительных серверов, тем более что наличие стандарта 1000Base-T позволяет получить приемлемые характеристики при меньших затратах. Широкое применение оптоволоконные технологии нашли в коммуникационной сфере, но это уже другая тема.
Другие типы кабеля в России применяются редко, так как в основном используются в сетях IBM Token Ring и FDDI, не получивших в России широкого распространения.
Сетевая модель OSI [ править ]
Сетевая модель OSI (англ. open systems interconnection basic reference model) — концептуальная модель, которая обобщает и стандартизирует представление средств сетевого взаимодействия в телекоммуникационных и компьютерных системах, независимо от их внутреннего устройства и используемых технологий. Модель OSI была разработана в 1984 году Международной организацией стандартизации (ISO). Основной целью ее создания был поиск решения проблемы несовместимости устройств, использующих различные коммуникационные протоколы, путем перехода на единый, общий для всех систем стек протоколов.
Общая характеристика модели [ править ]
OSI состоит из двух основных частей:
- абстрактная модель сетевого взаимодействия (семиуровневая модель)
- набор специализированных протоколов взаимодействия
Концепция семиуровневой модели была описана в работе Чарльза Бахмана. Данная модель подразделяет коммуникационную систему на уровни абстракции (англ. «abstraction layers»). В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень:
- имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств
- обслуживает уровень, находящийся непосредственно над ним, и обслуживается уровнем, находящимся под ним
Протоколы связи же решают две задачи: они обеспечивают взаимодействие между сущностями, находящимися на одном и том же уровне абстракции, но на разных хостах и абстрактно описывают функционал, который (N-1)-ый уровень предоставляет (N)-ому, где N — один из 7 уровней модели OSI. В рамках модели, любой протокол может взаимодействовать либо с протоколами своего уровня (горизонтальные взаимодействия), либо с протоколами уровня на единицу выше/ниже своего уровня (вертикальные взаимодействия).
Каждый из семи уровней характеризуется типом данных (PDU, сокращение от англ. protocol data units), которым данный уровень оперирует и функционалом, который он предоставляет слою, находящемуся выше него. Предполагается, что пользовательские приложения обращаются только к самому верхнему (прикладному) уровню, однако на практике это выполняется далеко не всегда.
Описание уровней модели OSI [ править ]
| Уровень | Функции | PDU | Примеры |
| 7. Прикладной | Некоторое высокоуровневое API | Данные | HTTP, FTP |
| 6. Представительский | Представление данных между сетевым сервисом и приложением | Данные | ASCII, EBCDIC, JPEG |
| 5. Сеансовый | Управление сеансами: продолжительный обмен информацией в виде множества передач между нодами | Данные | RPC, PAP |
| 4. Транспортный | Надёжная передача сегментов между двумя нодами в сети | Сегменты/Датаграммы | TCP, UDP |
| 3. Сетевой | Структуризация и управление множеством нод в сети | Пакеты | IPv4, IPv6 |
| 2. Канальный | Надёжная передача датафреймов между двумя нодами соединённых физическим уровнем | Фреймы | PPP, IEEE 802.2, Ethernet |
| 1. Физический | Передача и приём потока байтов через физическое устройство | Биты | USB, витая пара |
Прикладной уровень (Application layer) [ править ]
Самый верхний уровень модели, предоставляет набор интерфейсов для взаимодействия пользовательских процессов с сетью. Единицу информации, которой оперируют три верхних уровня модели OSI, принято называть сообщение (англ. message).
Прикладной уровень выполняет следующие функции:
- Позволяет приложениям использовать сетевые службы (например удалённый доступ к файлам)
- Идентификация пользователей по их паролям, адресам, электронным подписям
- Предоставление приложениям информации об ошибках
- Определение достаточности имеющихся ресурсов
- Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов
К числу наиболее распространенных протоколов верхних трех уровней относятся:
- FTP (File Transfer Protocol) протокол передачи файлов
- HTTP (HyperText Transfer Protocol)
- TELNET
- RDP (Remote Desktop Protocol)
Уровень представления (Presentation layer) [ править ]
Уровень представления занимается представлением данных, передаваемых прикладными процессами в нужной форме. Данные, полученные от приложений с прикладного уровня, на уровне представления преобразуются в формат подходящий для передачи их по сети, а полученные по сети данные преобразуются в формат приложений. Также кроме форматов и представления данных, данный уровень занимается конвертацией структур данных, используемых различными приложениями. Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями.
Как и прикладной уровень, уровень представления оперирует напрямую сообщениями. Уровень представления выполняет следующие основные функции:
- Генерация запросов на установление/завершение сеансов взаимодействия прикладных процессов
- Согласование представления данных между прикладными процессами
- Конвертация форм представления данных
- Шифрование данных
Примеры протоколов данного уровня:
- AFP — Apple Filing Protocol
- ICA — Independent Computing Architecture
- LPP — Lightweight Presentation Protocol
- NCP — NetWare Core Protocol
Сеансовый уровень (Session layer) [ править ]
Сеансовый уровень контролирует структуру проведения сеансов связи между пользователями. Он занимается установкой, поддержанием и прерыванием сеансов, фиксирует, какая из сторон является активной в данный момент, осуществляет синхронизацию обмена информацией между пользователями, что также позволяет устанавливать контрольные точки.
На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:
- полудуплексной (процессы будут передавать и принимать данные по очереди)
- дуплексной (процессы будут передавать данные, и принимать их одновременно)
Как 2 уровня над ним, сеансовый уровень использует сообщения в качестве PDU.
- Установление и завершение на сеансовом уровне соединения между взаимодействующими приложениями
- Синхронизация сеансовых соединений
- Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки
- Прекращение сеанса без потери данных
- Передача особых сообщений о ходе проведения сеанса
Примеры протоколов сеансового уровня:
- ADSP (AppleTalk Data Stream)
- ASP (AppleTalk Session)
- RPC (Remote Procedure Call)
- PAP (Password Authentication Protocol)
Транспортный уровень (Transport layer) [ править ]
Транспортный уровень предназначен для передачи надежной последовательностей данных произвольной длины через коммуникационную сеть от отправителя к получателю. Уровень надежности может варьироваться в зависимости от класса протокола транспортного уровня. Так например UDP гарантирует только целостность данных в рамках одной датаграммы и не исключает возможности потери/дублирования пакета или нарушения порядка получения данных; TCP обеспечивает передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот, склеивая фрагменты в один пакет.
Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов. В функции транспортного уровня входят:
- Управление передачей по сети и обеспечение целостности блоков данных
- Обнаружение ошибок, частичная их ликвидация
- Восстановление передачи после отказов и неисправностей
- Разбиение данных на блоки определенного размера
- Предоставление приоритетов при передаче блоков (нормальная или срочная)
- Подтверждение передачи.
Транспортный уровень использует сегменты или датаграммы в качестве основного типа данных.
- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)
- SCTP (Stream Control Transmission Protocol)
Сетевой уровень (Network layer) [ править ]
Сетевой уровень предоставляет функционал для определения пути передачи пакетов данных между клиентами, подключенными к одной коммуникационной сети. На данном уровне решается проблема маршрутизации (выбора оптимального пути передачи данных), трансляцией логических адресов в физические, отслеживанием неполадок в сети.
В рамках сетевого надежность доставки сообщений не гарантируется; сетевой уровень может реализовывать соответствующий функционал, но не обязан это делать. Роль PDU исполняют пакеты (англ. packet).
Сетевой уровень выполняет функции:
- Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть
- Упорядочение последовательностей пакетов
- Маршрутизация и коммутация
- Сегментирование и объединение пакетов
Наиболее часто на сетевом уровне используются протоколы:
- IP/IPv4/IPv6 (Internet Protocol) сетевой протокол стека TCP/IP
- IPX (Internetwork Packet Exchange, протокол межсетевого обмена)
- AppleTalk
Канальный уровень (Data link layer) [ править ]
Канальный уровень предназначен для передачи данных между двумя узлами, находящихся в одной локальной сети. Роль PDU исполняют фреймы (англ. frame). Фреймы канального уровня не пересекают границ локальной сети, что позволяет данному уровню сосредоточиться на локальной доставке (фактически межсетевой доставкой занимаются более высокие уровни).
Заголовок фрейма формируется из аппаратных адресов отправителя и получателя, что позволяет однозначно определить устройство, которое отправило данный фрейм и устройство, которому он предназначен. При этом никакая часть адреса не может быть использована, чтобы определить некую логическую/физическую группу к которой принадлежит устройство.
Канальный уровень состоит из двух подуровней: LLC и MAC.
Канальный уровень выполняет функции:
- LLC Multiplexing: Интерфейс между сетевым уровнем и MAC, чтобы несколько различных протоколов сетевого уровня могли сосуществовать.
- LLC Flow control: Механизм ограничении скорости передачи данных при медленном приёмнике
- LLC Error control: Определение (и иногда исправление) ошибок с помощью чексумм
- MAC Adressing mechanism: Адрессация на основе уникальных MAC-адресов
- MAC Channel access control mechanism: Предоставляет протокол множественного доступа
Наиболее часто на канальной уровне используются протоколы:
- PPP (Point-To-Point Protocol, протокол прямого соединения между двумя узлами)
- SLIP (Serial Line Internet Protocol, предшественник PPP, который всё ещё используется в микроконтроллерах)
- Ethernet II framing
Физический уровень (Physical layer) [ править ]
Физический уровень описывает способы передачи потока бит через дата линк, соединяющий сетевые устройства. Поток байт может быть сгруппирован в слова и сконвертирован в физический сигнал, который посылается через некоторое устройство.
Здесь специфицируются такие низкоуровневые параметры как частота, амплитуда и модуляция.
Физический уровень выполняет функции:
- Побитовая доставка
- Физическое кодирование (способ представления данных в виде импульсов)
- LLC Error control: Определение (и иногда исправление) ошибок с помощью чексумм
- MAC Adressing mechanism: Адрессация на основе уникальных MAC-адресов
- MAC Channel access control mechanism: Предоставляет протокол множественного доступа
Наиболее часто на физическом уровне используются протоколы:
- Ethernet physical layer (семейство стандартов с оптическими или электрическими свойствами соединений между устройствами)
- USB
Инкапсуляция [ править ]

Инкапсуляция (англ. encapsulation) — метод проектирования протоколов в которой логически независимые функции сети не зависят от реализации нижележащих механизмов с помощью включения этих механизмов в более высокоуровневые объекты.
Физический уровень ответственен за физическую передачу данных. IP предоставляет глобальный способ адресации устройств. TCP добавляет возможность выбора приложения (порт).
Во время инкапсуляции каждый уровень собирает свой собственный PDU, добавляя некоторый заголовок с контрольной информацией к PDU с более высокого уровня.
Открытая сетевая модель OSI: гайд для новичков
При изучении работы компьютерных сетей рано или поздно придется столкнуться с так называемой открытой сетевой моделью OSI . Модель оси очень важна для понимания сетевых технологий, и она часто вызывает неожиданные трудности у новичков.
Понятие протокола
Протоколы обмена (или просто протоколы) необходимы, чтобы участники обмена информацией понимали друг друга. В работе компьютерных сетей задействуется множество протоколов, относящихся к разным сетевым уровням . Например, сетевая карта компьютера следует протоколу, который описывает перевод цифровых данных в передающийся по проводам аналоговый сигнал; браузер связывается с сайтом в Интернете при помощи транспортного протокола TCP; сервер и браузер общаются, используя протокол HTTP.
Иными словами, протокол — это набор соглашений между разработчиками ПО и аппаратуры. Текст протокола отвечает на вопрос: “Что нужно сделать, чтобы программы и устройства могли взаимодействовать с другими программами/устройствами, поддерживающими протокол”.
OSI
OSI — это аббревиатура от Open Systems Interconnection, что в переводе буквально означает “Взаимодействие открытых систем”. Речь не идет об Open Source, открытые системы в данном случае являются системами, построенными на основе открытых (общедоступных) спецификаций, соответствующих стандартам.
Часто можно встретить термин “ эталонная модель OSI ”. Эталонная модель описывает, какие уровни должны быть в сети и какие функции выполняются на каждом из уровней. OSI модель разделяет все протоколы на 7 таких уровней:
- Физический (Physical)
- Канальный (Datalink)
- Сетевой (Network)
- Транспортный (Transport)
- Сеансовый (Session)
- Представительный (Presentation)
- Прикладной (Application)
Модель OSI не включает описание протоколов; они определяются в отдельных стандартах. Исторически вышло, что на практике модель взаимодействия открытых систем не применяется. Раньше существовали её буквальные реализации, содержащие ровно 7 слоев. Однако со временем их вытеснил менее предписывающий набор протоколов TCP/IP, на котором построен современный Интернет.
Тем не менее ныне используемые протоколы приблизительно соответствуют уровням оси , а сама модель используется в качестве общего языка для описания устройства сетей.
Физический уровень
Все уровни нумеруют, начиная с самого близкого к среде передачи данных. В данном случае первым будет физический уровень модели osi . Здесь происходит преобразование битов информации в сигналы, которые затем передаются по среде. Используемый физический протокол зависит от того, каким образом компьютер подключен к сети.
Например, в случае обычной локальной сети на основе витой пары применяется спецификация 100BASE-TX (стандарт IEEE 802.3u), определяющая кабели и разъемы для соединения, технические характеристики проводов, частоты, напряжение, кодировку и многое другое. Подключения через Wi-Fi сложнее, так как данные передаются по радиоканалам, а эфир один на всех. Взаимодействие Wi-Fi устройств описывается спецификацией IEEE 802.11, которая, как и Ethernet, включает помимо физического уровня часть канального.
При выходе в Интернет через сеть сотовой телефонной связи используются спецификации GSM, включающие специальные протоколы (например GPRS) и затрагивающие не только два первых, но и сетевой уровень. Бывают и относительно простые протоколы, например RS232. Он будет использоваться, если соединить два компьютера нуль-модемным кабелем через COM-порты.
Канальный уровень
Далее располагается канальный уровень модели osi . На этом слое пересылаются не биты, а целые сообщения (кадры, фреймы). Канальный уровень получает с физического поток бит, находит начало и конец сообщения и упаковывает биты в кадр. Также происходит обнаружение и коррекция ошибок. В многоточечных сетевых соединениях, где один и тот же канал связи используется разными компьютерами, канальный уровень дополнительно обеспечивает физическую адресацию и управление доступом к разделяемой среде передачи данных.
Часть задач, которые в теории решают протоколы этого уровня, решена в спецификациях Ethernet и Wi-Fi, но есть кое-что еще. Сетевые интерфейсы в многоточечном соединении опознают друг друга по специальным шестибайтовым идентификаторам, mac-адресам. При настройке сети сетевые адаптеры должны знать, кто из них отвечает за какой сетевой адрес (ip-адрес), чтобы отправлять пакеты (блоки данных, передаваемые в пакетном режиме) по назначению. Для автоматического построения таблиц соответствия ip- и mac-адресов используется протокол ARP (Address Resolution Protocol).
В соединениях “точка-точка” ARP не нужен. Зато часто применяется протокол PPP (Point to Point Protocol). Кроме структуры кадра и контроля его целостности, он содержит правила для установления соединения, проверки состояния линии связи и аутентификации участников.
Сетевой уровень
Следующий уровень — сетевой уровень модели osi . Он предназначен для построения крупных составных сетей на основе различных сетевых технологий. На этом уровне обеспечивается согласование различий в разных технологиях канального уровня и общая адресация с помощью глобальных адресов, позволяющих однозначно определить компьютер в сети. Также выполняется маршрутизация — определение маршрута пересылки пакетов через промежуточные узлы.
Иногда можно столкнуться с утверждением, что в Интернете в роли этого уровня выступает протокол IP (Internet Protocol). С одной стороны это так: именно IP определяет структуру отдельного пакета, передающегося по сети через шлюзы, систему сетевых адресов и некоторые другие функции. С другой стороны существует несколько других протоколов, которые также можно отнести к сетевому уровню, хотя они и работают “поверх” IP.
Наиболее важным среди них можно считать протокол ICMP (Internet Control Message Protocol). Благодаря ему участники соединений обмениваются сообщениями о всяких штатных и нештатных ситуациях: обрыв соединения, отсутствие подходящего маршрута и другие случаи невозможности доставки пакета. Иногда сообщения ICMP содержат рекомендации по использованию альтернативного маршрута.
Транспортный уровень
Пакеты, передаваемые по сети при помощи протоколов сетевого уровня, обычно ограничены в размерах. Они могут доставляться не в том порядке, в котором были отправлены, теряться, или, наоборот, дублироваться. Прикладным программам требуется более высокий уровень сервиса, обеспечивающий надежность доставки данных и простоту работы. За это как раз отвечают протоколы транспортного уровня модели osi . Они следят за доставкой пакетов, отправляя и анализируя соответствующие подтверждения, нумеруют пакеты и расставляют их в нужном порядке после получения.
Как говорилось выше, протоколы сетевого уровня не гарантируют доставку пакета. Отправленный пакет может потеряться или, наоборот, прийти в двух экземплярах, а пакеты, отправленные раньше других, могут прийти к получателю позже. Содержимое такого пакета обычно называют дейтаграммой (datagram).
Одним из самых простых транспортных протоколов является UDP (user datagram protocol). Участники сетевого взаимодействия, работающие на одном компьютере, идентифицируются целыми числами, называемыми номерами портов (или просто портами). Протокол UDP предписывает добавлять к передаваемым через сеть данным номер порта отправителя и получателя, длину дейтаграммы и ее контрольную сумму. Все это “заворачивается” в пакет в соответствии с соглашениями протокола IP. При этом ответственность о подтверждениях, повторных отправках, о делении информации на небольшие порции и о последующем восстановлении исходной последовательности лежит на авторе программ. Поэтому UDP не защищает от возможности потери, дублирования пакета и нарушения порядка получения обеспечивается только целостность данных внутри одной дейтаграммы.
Существует также второй вид транспортного взаимодействия — потоковое. Решение всех проблем, связанных с потерями пакетов, восстановлением данных из отдельных фрагментов берет на себя реализация транспортного протокола, которая оказывается гораздо сложнее реализации протокола дейтаграммного. Соответствующий транспортный протокол, используемый в Интернете, называется TCP (transmission control protocol). В отличие от работы с UDP, при потоковой работе необходимо установить соединение. Гарантируется, что все байты, записанные в поток, будут затем доступны для чтения на другом конце потока, причем их порядок будет сохранен; при невозможности соблюдения этой гарантии соединение окажется разорвано, о чем узнают оба партнера. Протокол TCP предусматривает целый ряд нетривиальных соглашений, к счастью, всю их реализацию берет на себя операционная система.
Остальные уровни
Определить, какие из реально существующих протоколов относятся к оставшимся трем уровням, будет несколько сложней. После транспортного идет сеансовый уровень. По замыслу создателей оси модели , его целью является установка сеансов связи. Сюда можно включить определение очередности передачи сообщений в управлении диалогом, например в видеоконференциях, задачи одновременного доступа к некоторым критическим операциям и защиту от разрывов сетевого соединения (функция синхронизации). Проблема заключается в том, что на практике все это реализуется либо средствами протоколов прикладного уровня, либо еще более высокоуровневыми соглашениями, не входящими в модель OSI. Поэтому в реальных сетях сеансовый уровень не используется.
Следующий слой — уровень представления. Его задача заключается в предоставлении данных в виде, понятном как отправителю, так и получателю. Сюда можно включить различные форматы данных и правила их интерпретации: протоколы кодировки текста (ASCII, UTF-8, koi8r), спецификации разнообразных версий HTMLXHTML, графические форматы (JPEG, GIF, PNG), набор спецификаций MIME и прочее. На уровне представления реализуется шифрование и дешифрование. Самые популярные примеры — Transport Layer Security (TLS)/Secure Socket Layer (SSL).
С прикладным уровнем все просто. На нем организуется взаимодействие приложений, которыми пользуются конечные пользователи. Сюда входит электронная почта, “Всемирная паутина” (World Wide Web), социальные сети, видео и аудиосвязь и т.п.
Плюсы и минусы
Модель OSI была принята Международной организацией по стандартизации (ISO) в 1983 году. В то время сетевые технологии активно развивались. Пока в комитете спорили о стандартах, все постепенно переходили на стек TCP/IP, вытесняющий другие протоколы. Когда свет увидел реализацию протоколов OSI , на нее обрушился шквал критики. Их ругали за несоответствие реальным технологиям, неполную спецификацию, малый спектр возможностей по сравнению с существующими протоколами.
Кроме того, эксперты отмечали деление на 7 уровней необоснованным. Некоторые слои практически не использовались, а одни и те же задачи решались на разных уровнях. Специалисты шутят, что модель OSI вышла семиуровневой, потому что в соответствующем комитете образовалось 7 подкомитетов и каждый предложил что-то свое. Между тем набор протоколов TCP/IP, на котором построен весь современный Интернет, разрабатывался узкой группой людей по принципу ad hoc — решение задачи здесь и сейчас. Никаких комитетов в создании TCP/IP участия не принимало.
Однако не все так плохо. Неоспоримым преимуществом модели OSI является хорошая теоретическая проработка вопросов сетевого взаимодействия, поэтому сегодня она является эталоном для документации и обучения. Некоторые считают, что не все потеряно, и, возможно, модель найдет свое место, например в облачных вычислениях.
Простое пособие по сетевой модели OSI для начинающих

Открытая сетевая модель OSI (Open Systems Interconnection model) состоит из семи уровней. Что это за уровни, как устроена модель и какова ее роль при построении сетей — в статье.
Модель OSI является эталонной. Эталонная она потому, что полное название модели выглядит как «Basic Reference Model Open Systems Interconnection model», где Basic Reference Model означает «эталонная модель». Вначале рассмотрим общую информацию, а потом перейдем к частным аспектам.

Принцип устройства сетевой модели
Сетевая модель OSI имеет семь уровней, иерархически расположенных от большего к меньшему. То есть, самым верхним является седьмой (прикладной), а самым нижним — первый (физический). Модель OSI разрабатывалась еще в 1970-х годах, чтобы описать архитектуру и принципы работы сетей передачи данных. Важно помнить, что данные передаются не только по сети интернет, но и в локальных сетях с помощью проводных или беспроводных соединений.
В процессе передачи данных всегда участвуют устройство-отправитель, устройство-получатель, а также сами данные, которые должны быть переданы и получены. С точки зрения рядового пользователя задача элементарна — нужно взять и отправить эти данные. Все, что происходит при отправке и приеме данных, детально описывает семиуровневая модель OSI.
На седьмом уровне информация представляется в виде данных, на первом — в виде бит. Процесс, когда информация отправляется и переходит из данных в биты, называется инкапсуляцией. Обратный процесс, когда информация, полученная в битах на первом уровне, переходит в данные на седьмом, называется декапсуляцией. На каждом из семи уровней информация представляется в виде блоков данных протокола — PDU (Protocol Data Unit).
Рассмотрим на примере: пользователь 1 отправляет картинку, которая обрабатывается на седьмом уровне в виде данных, данные должны пройти все уровни до самого нижнего (первого), где будут представлены как биты. Этот процесс называется инкапсуляцией. Компьютер пользователя 2 принимает биты, которые должны снова стать данными. Этот обратный процесс называется декапсуляция. Что происходит с информацией на каждом из семи уровней, как и где биты переходят в данные мы разберем в этой статье.

Первый, физический уровень (physical layer, L1)
Начнем с самого нижнего уровня. Он отвечает за обмен физическими сигналами между физическими устройствами, «железом». Компьютерное железо не понимает, что такое картинка или что на ней изображено, железу картинка понятна только в виде набора нулей и единиц, то есть бит. В данном случае бит является блоком данных протокола, сокращенно PDU (Protocol Data Unit).
Каждый уровень имеет свои PDU, представляемые в той форме, которая будет понятна на данном уровне и, возможно, на следующем до преобразования. Работа с чистыми данными происходит только на уровнях с пятого по седьмой.
Устройства физического уровня оперируют битами. Они передаются по проводам (например, через оптоволокно) или без проводов (например, через Bluetooth или IRDA, Wi-Fi, GSM, 4G и так далее).
Второй уровень, канальный (data link layer, L2)
Когда два пользователя находятся в одной сети, состоящей только из двух устройств — это идеальный случай. Но что если этих устройств больше?
Второй уровень решает проблему адресации при передаче информации. Канальный уровень получает биты и превращает их в кадры (frame, также «фреймы»). Задача здесь — сформировать кадры с адресом отправителя и получателя, после чего отправить их по сети.
У канального уровня есть два подуровня — это MAC и LLC. MAC (Media Access Control, контроль доступа к среде) отвечает за присвоение физических MAC-адресов, а LLC (Logical Link Control, контроль логической связи) занимается проверкой и исправлением данных, управляет их передачей.
На втором уровне OSI работают коммутаторы, их задача — передать сформированные кадры от одного устройства к другому, используя в качестве адресов только физические MAC-адреса.
Третий уровень, сетевой (network layer, L3)
На третьем уровне появляется новое понятие — маршрутизация. Для этой задачи были созданы устройства третьего уровня — маршрутизаторы (их еще называют роутерами). Маршрутизаторы получают MAC-адрес от коммутаторов с предыдущего уровня и занимаются построением маршрута от одного устройства к другому с учетом всех потенциальных неполадок в сети.
На сетевом уровне активно используется протокол ARP (Address Resolution Protocol — протокол определения адреса). С помощью него 64-битные MAC-адреса преобразуются в 32-битные IP-адреса и наоборот, тем самым обеспечивается инкапсуляция и декапсуляция данных.
Четвертый уровень, транспортный (transport layer, L4)

Все семь уровней модели OSI можно условно разделить на две группы:
- Media layers (уровни среды),
- Host layers (уровни хоста).
Уровни группы Media Layers (L1, L2, L3) занимаются передачей информации (по кабелю или беспроводной сети), используются сетевыми устройствами, такими как коммутаторы, маршрутизаторы и т.п. Уровни группы Host Layers (L4, L5, L6, L7) используются непосредственно на устройствах, будь то стационарные компьютеры или портативные мобильные устройства.
Четвертый уровень — это посредник между Host Layers и Media Layers, относящийся скорее к первым, чем к последним, его главной задачей является транспортировка пакетов. Естественно, при транспортировке возможны потери, но некоторые типы данных более чувствительны к потерям, чем другие. Например, если в тексте потеряются гласные, то будет сложно понять смысл, а если из видеопотока пропадет пара кадров, то это практически никак не скажется на конечном пользователе. Поэтому, при передаче данных, наиболее чувствительных к потерям на транспортном уровне используется протокол TCP, контролирующий целостность доставленной информации.
Для мультимедийных файлов небольшие потери не так важны, гораздо критичнее будет задержка. Для передачи таких данных, наиболее чувствительных к задержкам, используется протокол UDP, позволяющий организовать связь без установки соединения.
При передаче по протоколу TCP, данные делятся на сегменты. Сегмент — это часть пакета. Когда приходит пакет данных, который превышает пропускную способность сети, пакет делится на сегменты допустимого размера. Сегментация пакетов также требуется в ненадежных сетях, когда существует большая вероятность того, что большой пакет будет потерян или отправлен не тому адресату. При передаче данных по протоколу UDP, пакеты данных делятся уже на датаграммы. Датаграмма (datagram) — это тоже часть пакета, но ее нельзя путать с сегментом.
Главное отличие датаграмм в автономности. Каждая датаграмма содержит все необходимые заголовки, чтобы дойти до конечного адресата, поэтому они не зависят от сети, могут доставляться разными маршрутами и в разном порядке. Датаграмма и сегмент — это два PDU транспортного уровня модели OSI. При потере датаграмм или сегментов получаются «битые» куски данных, которые не получится корректно обработать.
Первые четыре уровня — специализация сетевых инженеров, но с последними тремя они не так часто сталкиваются, потому что пятым, шестым и седьмым занимаются разработчики.
Пятый уровень, сеансовый (session layer, L5)
Пятый уровень оперирует чистыми данными; помимо пятого, чистые данные используются также на шестом и седьмом уровне. Сеансовый уровень отвечает за поддержку сеанса или сессии связи. Пятый уровень оказывает услугу следующему: управляет взаимодействием между приложениями, открывает возможности синхронизации задач, завершения сеанса, обмена информации.
Службы сеансового уровня зачастую применяются в средах приложений, требующих удаленного вызова процедур, т.е. чтобы запрашивать выполнение действий на удаленных компьютерах или независимых системах на одном устройстве (при наличии нескольких ОС).
Примером работы пятого уровня может служить видеозвонок по сети. Во время видеосвязи необходимо, чтобы два потока данных (аудио и видео) шли синхронно. Когда к разговору двоих человек прибавится третий — получится уже конференция. Задача пятого уровня — сделать так, чтобы собеседники могли понять, кто сейчас говорит.
Шестой уровень, представления данных (presentation layer, L6)
О задачах уровня представления вновь говорит его название. Шестой уровень занимается тем, что представляет данные (которые все еще являются PDU) в понятном человеку и машине виде. Например, когда одно устройство умеет отображать текст только в кодировке ASCII, а другое только в UTF-8, перевод текста из одной кодировки в другую происходит на шестом уровне.
Шестой уровень также занимается представлением картинок (в JPEG, GIF и т.д.), а также видео-аудио (в MPEG, QuickTime). Помимо перечисленного, шестой уровень занимается шифрованием данных, когда при передаче их необходимо защитить.

Седьмой уровень, прикладной (application layer)
Седьмой уровень иногда еще называют уровень приложений, но чтобы не запутаться можно использовать оригинальное название — application layer. Прикладной уровень — это то, с чем взаимодействуют пользователи, своего рода графический интерфейс всей модели OSI, с другими он взаимодействует по минимуму.
Все услуги, получаемые седьмым уровнем от других, используются для доставки данных до пользователя. Протоколам седьмого уровня не требуется обеспечивать маршрутизацию или гарантировать доставку данных, когда об этом уже позаботились предыдущие шесть. Задача седьмого уровня — использовать свои протоколы, чтобы пользователь увидел данные в понятном ему виде.
Протоколы здесь используют UDP (например, DHCP) или TCP (например, HTTP, HTTPS, SFTP (Simple FTP), DNS). Прикладной уровень является самым верхним по иерархии, но при этом его легче всего объяснить.
Критика модели OSI
Семиуровневая модель была принята в качестве стандарта ISO/IEC 7498, действующего по сей день, однако, модель имеет свои недостатки. Среди основных недостатков говорят о неподходящем времени, плохой технологии, поздней имплементации, неудачной политике.
Первый недостаток — это неподходящее время. На разработку модели было потрачено неоправданно большое количество времени, но разработчики не уделили достаточное внимание существующим в то время стандартам. В связи с этим модель обвиняют в том, что она не отражает действительность. В таких утверждениях есть доля истины, ведь уже на момент появления OSI другие компании были больше готовы работать с получившей широкое распространение моделью TCP/IP.
Вторым недостатком называют плохую технологию. Как основной довод в пользу того, что OSI — это плохая технология, приводят распространенность стека TCP/IP. Протоколы OSI часто дублируют другу друга, функции распределены по уровням неравнозначно, а одни и те же задачи могут быть решены на разных уровнях.
Разделение на семь уровней было скорее политическим, чем техническим. При построении сетей в реальности редко используют уровни 5 и 6, а часто можно обойтись только первыми четырьмя. Даже изначальное описание архитектуры в распечатанном виде имеет толщину в один метр.
Кроме того, в отличие от TCP/IP, OSI никогда не ассоциировалась с UNIX. Добиться широкого распространения OSI не получилось потому, что она проектировалась как закрытая модель, продвигаемая Европейскими телекоммуникационными компаниями и правительством США. Стек протоколов TCP/IP изначально был открыт для всех, что позволило ему набрать популярность среди сторонников открытого программного кода.
Даже несмотря на то, что основные проблемы архитектуры OSI были политическими, репутация была запятнана и модель не получила распространения. Тем не менее, в сетевых технологиях, при работе с коммутацией даже сегодня обычно используют модель OSI.

Вывод, роль модели OSI при построении сетей
В статье мы рассмотрели принципы построения сетевой модели OSI. На каждом из семи уровней модели выполняется своя задача. В действительности архитектура OSI сложнее, чем мы описали. Существуют и другие уровни, например, сервисный, который встречается в интеллектуальных или сотовых сетях, или восьмой — так называют самого пользователя.
Как мы упоминали выше, оригинальное описание всех принципов построения сетей в рамках этой модели, если его распечатать, будет иметь толщину в один метр. Но компании активно используют OSI как эталон. Мы перечислили только основную структуру словами, понятными начинающим.
Модель OSI служит инструментом при диагностике сетей. Если в сети что-то не работает, то гораздо проще определить уровень, на котором произошла неполадка, чем пытаться перестроить всю сеть заново.
Зная архитектуру сети, гораздо проще ее строить и диагностировать. Как нельзя построить дом, не зная его архитектуры, так невозможно построить сеть, не зная модели OSI. При проектировании важно учитывать все. Важно учесть взаимодействие каждого уровня с другими, насколько обеспечивается безопасность, шифрование данных внутри сети, какой прирост пользователей выдержит сеть без обрушения, будет ли возможно перенести сеть на другую машину и т.д. Каждый из перечисленных критериев укладывается в функции одного из семи уровней.
Уровни эталонной модели OSI

Модель OSI (Open Systems Interconnection model) — это сетевая модель стека сетевых протоколов OSI/ISO. С помощью данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.
В данной статье мы рассмотрим назначение уровней эталонной модели osi, с подробным описанием каждого из семи уровней модели.

Процесс организации принципа сетевого взаимодействия, в компьютерных сетях, довольно-таки сложная и непростая задача, поэтому для осуществления этой задачи решили использовать хорошо известный и универсальный подход — декомпозиция.
Декомпозиция — это научный метод, использующий разбиение одной сложной задачи на несколько более простых задач — серий (модулей), связанных между собой.
Многоуровневый подход:
- все модулей дробятся на отдельные группы и сортируются по уровням, тем самым создавая иерархию;
- модули одного уровня для осуществления выполнения своих задач посылает запросы только к модулям непосредственно примыкающего нижележащего уровня;
- включается работу принцип инкапсуляции – уровень предоставляет сервис, пряча от других уровней детали его реализации.
На Международную Организацию по Стандартам (International Standards Organization, ISO, созданная в 1946 году) возложили задачу создания универсальной модели, которая четко разграничит и определит различные уровни взаимодействия систем, с поименованными уровнями и с наделением каждого уровня своей конкретной задачи. Эту модель назвали моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI .
Эталонная Модель Взаимосвязи Открытых Систем (семиуровневая модель osi) введена в 1977 г.
После утверждения данной модели, проблема взаимодействия была разделена (декомпозирована) на семь частных проблем, каждая из которых может быть решена независимо от других.
Уровни эталонной модели
Уровни эталонной модели OSI представляют из себя вертикальную структуру, где все сетевые функции разделены между семью уровнями. Следует особо отметить, что каждому такому уровню соответствует строго описанные операции, оборудование и протоколы.
Взаимодействие между уровнями организовано следующим образом:
- по вертикали — внутри отдельно взятой ЭВМ и только с соседними уровнями.
- по горизонтали — организовано логическое взаимодействие — с таким же уровнем другого компьютера на другом конце канала связи (то есть сетевой уровень на одном компьютере взаимодействует с сетевым уровнем на другом компьютере).
Так как семиуровневая модель osi состоит из строгой соподчиненной структуры, то любой более высокий уровень использует функции нижележащего уровня, причем распознает в каком именно виде и каким способом (т.е. через какой интерфейс) нужно передавать ему поток данных.

Рассмотрим, как организуется передача сообщений по вычислительной сети в соответствии с моделью OSI. Прикладной уровень — это уровень приложений, то есть данный уровень отображается у пользователя в виде используемой операционной системы и программ, с помощью которой выполняется отправка данных. В самом начале именно прикладной уровень формирует сообщение, далее оно передается представительному уровню, то есть спускается вниз по модели OSI. Представительный уровень, в свою очередь, проводит анализ заголовка прикладного уровня, выполняет требуемые действия, и добавляет в начало сообщения свою служебную информацию, в виде заголовка представительного уровня, для представительного уровня узла назначения. Далее движение сообщения продолжается вниз, спускается к сеансовому уровню, и он, в свою очередь, также добавляет свои служебные данные, в виде заголовка вначале сообщения и процесс продолжается, пока не достигнет физического уровня.
Следует отметить, что помимо добавления служебной информации в виде заголовка вначале сообщения, уровни могут добавлять служебную информацию и в конце сообщения, который называется «трейлер».
Когда сообщение достигло физического уровня, сообщение уже полностью сформировано для передачи по каналу связи к узлу назначения, то есть содержит в себе всю служебную информацию добавленную на уровнях модели OSI.

Помимо термина «данные» (data), которое используется в модели OSI на прикладном, представительном и сеансовом уровнях, используются и другие термины на других уровнях модели OSI, чтобы можно было сразу определить на каком уровне модели OSI выполняется обработка.
В стандартах ISO для обозначения той или иной порции данных, с которыми работают протоколы разных уровней модели OSI, используется общее название — протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней часто используются специальные названия: кадр (frame), пакет (packet), сегмент (segment).

Функции физического уровеня

- на этом уровне стандартизируются типы разъемов и назначение контактов;
- определяется, каким образом представляются «0» и «1»;
- интерфейс между сетевым носителем и сетевым устройством (передает электрические или оптические сигналы в кабель или радиоэфир, принимает их и преобразует в биты данных);
- функции физического уровня реализуются во всех устройствах, подключенных к сети;
- оборудование, работающее на физическом уровне: концентраторы;
- Примеры сетевых интерфейсов, относящихся к физическому уровню: RS-232C, RJ-11, RJ-45, разъемы AUI, ВNС .
Функции канального уровня

- нулевые и единичные биты Физического уровня организуются в кадры — «frame». Кадр является порцией данных, которая имеет независимое логическое значение;
- организация доступа к среде передачи;
- обработка ошибок передачи данных;
- определяет структуру связей между узлами и способы их адресации;
- оборудование, работающее на канальном уровне: коммутаторы, мосты;
- примеры протоколов, относящихся к канальному уровню: Ethernet , Token Ring , FDDI, Bluetooth , Wi-Fi , Wi-Max, X.25, FrameRelay, ATM.
Для ЛВС канальный уровень разбивается на два подуровня:
- LLC (LogicalLinkControl) –отвечает за установление канала связи и за безошибочную посылку и прием сообщений данных;
- MAC (MediaAccessControl) – обеспечивает совместный доступ сетевых адаптеров к физическому уровню, определение границ кадров, распознавание адресов назначения (например, доступ к общей шине).

Функции сетевого уровня

- определения пути передачи данных;
- определения кратчайшего маршрута; ; ;
- отслеживания неполадок и заторов в сети.
- передача сообщений по связям с нестандартной структурой;
- согласование разных технологий;
- упрощение адресации в крупных сетях;
- создание барьеров на пути нежелательного трафика между сетями.
Оборудование, работающее на сетевом уровне: маршрутизатор.
Виды протоколов сетевого уровня:
- сетевые протоколы (продвижение пакетов через сеть: IP , ICMP);
- протоколы маршрутизации: RIP, OSPF;
- протоколы разрешения адресов (ARP).
Функции транспортного уровня модели osi

- обеспечивает приложениям (или прикладному и сеансовому уровням) передачу данных с требуемой степенью надежности, компенсирует недостатки надёжности более низких уровней;
- мультиплексирование и демультиплексирование т.е. сбора и разборка пакетов;
- протоколы предназначены для взаимодействия типа «точка—точка»;
- начиная с данного уровня, протоколы реализуются программными средствами конечных узлов сети — компонентами их сетевых ОС;
- примеры: протоколы TCP , UDP .
Функции сеансового уровня

- поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время;
- создание/завершение сеанса;
- обмен информацией;
- синхронизация задач;
- определение права на передачу данных;
- поддержанием сеанса в периоды неактивности приложений.
- синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при сбоях.
Функции представительного уровня

- отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям;
- возможно осуществление:
- сжатия/распаковки или кодирования/декодирования данных;
- перенаправления запросов другому сетевому ресурсу, если они не могут быть обработаны локально.
- пример: протокол SSL (обеспечивает секретных обмен сообщениями для протоколов прикладного уровня TCP/IP).
Функции прикладного уровня модели osi

- является набором разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, организуют совместную работу;
- обеспечивает взаимодействие сети и пользователя;
- разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты;
- отвечает за передачу служебной информации;
- предоставляет приложениям информацию об ошибках;
- пример: HTTP, POP3, SNMP, FTP.
Сетезависимые и сетенезависимые уровни семиуровневой модели osi
По своим функциональным возможностям семь уровней модели OSI можно отнести к одной из двух групп:
Cетевая модель OSI
Cетевая модель OSI (Open Systems Interconnection model) – это эталонная модель взаимодействия открытых систем. Массово не используется, но благодаря ей можно понять, как работает аппаратная и программная части сети. На практике OSI применяют для упрощенного представления открытых систем (Ethernet, IP и т. д.). Сисадминам, сетевым инженерам кроме нее следует изучить модель TCP/IP.
Общие особенности сетевой модели

У сетевой модели OSI всего 7 уровней, расположенных в иерархическом порядке. Верхний седьмой уровень – прикладной, а нижний первый – физический. Сетевая модель была разработана ещё в 1975 году для описания архитектуры и работы сетей, передающих данные. В процессе отправки информации всегда участвует 3 элемента:
- отправитель;
- получатель;
- отправляемые и получаемые данные.
Так видит отправку файлов по беспроводным и проводным сетям обычный пользователь. Процедуру отправки и получения данных детально описывает OSI. На первом уровне информация представлена в виде бит. На седьмом она становится данными. Когда информация из бит переходит в данные происходит декапсуляция. Обратное преобразование с седьмого на первый уровень называется инкапсуляцией.
Информация на каждом уровне представляется своими протоколами. Любой файл при отправке по сети проходит процесс инкапсуляции и декапсуляции. Рассмотрим более подробно уровни представления модели OSI.
1 уровень – физический (L1)
На первом уровне передается сигнал и ток от оборудования отправителя к получателю. Информация отправляется в виде нулей и единиц. На каждом уровне есть свой блок данных протокола (PDU). На первом уровне PDU – это бит. Биты передаются по оптоволокну или по беспроводной сети.
К протоколам физического уровня относятся Bluetooth, Wi-Fi, TIA-449, ITU, GSM и т. д. RJ-45, RJ-11 тоже формально относятся к L1. В виде данных обработка информации начинается только на высоких уровнях модели (с 5 по 7).
2 уровень – канальный (L2)
К сети кроме отправителя и получателя практически всегда подключены другие устройства. Второй уровень отвечает за процедуру адресации, т. е. передачу информации нужному пользователю. При поступлении на L2 биты конвертируются в кадры. В результате процедуры преобразования получаются фреймы с адресом отправителя и получателя. Готовые кадры отправляются далее.
MAC и LLC – два подуровня L2. На MAC-подуровне происходит присвоение MAC-адресов пользовательским устройствам. LLC проверяет правильность передаваемой информации и автоматически если исправляет при наличии нарушений. На этом уровне работают мосты, коммутаторы и другая аппаратура.
На рынке до сих пор встречаются коммутаторы второго уровня. Они работают с MAC-адресами и не способны обрабатывать IP-адреса. Для обеспечения маршрутизации внутри виртуальных локальных сетей потребуется коммутатор третьего уровня. Их также называют многослойными. Кроме работы с MAC такие устройства могут распознавать IP-адреса и проводить тегирование ЛВС.
3 уровень – сетевой (L3)
На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.
Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.
При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.
L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.
4 уровень – транспортный (L4)
Отправка данных от отправителя к получателю регулируется отдельно. За этот процесс отвечает транспортный уровень. При передаче информации всегда теряется часть данных. Но для некоторых видов файлов (аудио, видео, фотографии) малые потери не критичны. Для передачи таких данных применяется протокол UDP. Он обеспечивает отправку пакетов без установки соединения.
При использовании UDP файл делится на датаграммы. Она содержит заголовки, которые необходимы для доставки до получателя. По этой причине датаграммы могут направляться пользователю разными маршрутами и в произвольном порядке. Если датаграмма потеряется, в файле появляется битые данные.
Если же пользователь отправляет файлы, чувствительные к потерям данных, применяется TCP. Он проверяет целостность передаваемой информации. При его использовании файл сегментируется. Но это происходит не всегда, а только с теми пакетами данных, размер которых превышает пропускную способность сетей. Сегментация также требуется, когда происходит отправка файлов по нестабильным сетям.
В повседневной работе инженеры взаимодействуют только с первыми четырьмя уровнями. Знать их особенности нужно для проектирования сетей и настройки оборудования. С остальными уровнями взаимодействуют разработчики ПО.
5 уровень – сеансовый (L5)
Этот уровень модели OSI относится к «верхним». Здесь осуществляются операции с чистыми данными. Отвечает пятый уровень за поддержку связи во время сеанса или сессии. Он обеспечивает правильное взаимодействие между приложениями, позволяет синхронизировать разные задачи, обмениваться данными. Благодаря L5 происходит поддержка и завершение сеанса.
Сеанс состоит из запросов и ответов, направляемых между разными приложениями. Сеансовый уровень используется в ПО, удаленно вызывающих процедуры. Примером работы L5 служит видеовызов в Skype или прямой эфир на широкую аудиторию. Во время сеанса нужно обеспечить синхронизованную передачу аудио и видео всем участникам конференции. За это и отвечают протоколы пятого уровня.
6 уровень – представления данных (L6)
Протоколы L6 осуществляют кодирование и декодирование информации. Информация, передаваемая по сети, на этом уровне не меняет своего содержания. Кроме перевода данных из одного формата в другой, L6 осуществляет и другие функции:
- сжатие информации для увеличения пропускной способности канала;
- шифрование данных для защиты от злоумышленников;
- отправка запросов на прекращение сеанса связи.
Преобразование данных осуществляется автоматически и не требует от пользователя подтверждения. При получении данных с L5 автоматически устанавливаются стандартные форматы файлов.
7 уровень – прикладной (L7)

Другое название L7 – уровень приложений. Он отвечает за взаимодействие пользовательских приложений с работающей сетью. Этот уровень обеспечивает использование программами сетевых служб, отправку e-mail, обмен данными через торренты, предоставление ПО информации о сбоях и т. д. К протоколам прикладного уровня относят:
В случае с HTTPS его принадлежность к L7 или L6 определяется способом использования. Если пользователь занимается веб-серфингом, то протокол относят к прикладному уровню. Если же осуществляется передача финансовых данных, то низкоуровневый HTTPS рассматривают как L6.
Седьмой уровень отвечает за представление данных в понятном пользователю виде. На этом этапе не происходит доставка или маршрутизация информации. Протоколы просто преобразуют данные для визуализации. Кроме преобразования данных они также обеспечивают доступ к удаленным БД, пересылают служебную информацию.
Недостатки OSI
Семиуровневая модель OSI считается устаревшей. На момент выхода она уже не поддерживала все актуальные стандарты, а сейчас эта проблема стала более выраженной. Поэтому современные компании ориентируются на TCP/IP. Еще один недостаток модели – плохо проработанная технология. Протоколы OSI дублируют друг друга, распределение функций немного странное.
При построении сети используются не все уровни модели ОСИ. Обычно для настройки оборудования инженерам нужно знать первые 4 уровня. L5 и L6 при работе с реальными сетями практически не применяются.
Модель ISO/OSI является закрытой. Её в основном использовали телекоммуникационные компании Франции, США, Англии. В тоже время стек протоколов TCP/IP разрабатывался как открытая модель, что и привлекло внимание разработчиков по всему миру.
Разница OSI и TCP/IP
Некоторые инженеры ошибочно предполагают, что модель OSI/ISO – это расширенная версия TCP/IP, но на самом деле такой подход не совсем верный. У этих моделей разное распределение межуровневых функций. В TCP/IP всего 4 уровня. На канальном уровне обмен данными осуществляется при помощи битов и кадров, а на сетевом с помощью пакетов. На транспортном уровне передаются сегменты и датаграммы. А на прикладном уровне происходит передача данных.
Прикладной уровень TCP/IP объединяет функции 3 уровней ОСИ: сеансового, представления данных и прикладного. Уровень доступа сетевой модели передачи цифровых данных охватывает физические и канальный уровни OSI. Сами службы тоже работают немного иначе. В TCP/IP со службами последовательности и подтверждения работает транспортный уровень. В OSI за это отвечает канальный уровень.
Считается, что при использовании TCP/IP инженер быстрее найдет неполадки в сети, т. к. диагностику проводят с самого нижнего уровня. Простейший пример поиска проблем на первом уровне – проверка целостности кабелей и их подключения к сетевой карте ПК.
Заключение
Уровни OSI модели позволяют получить общее представление об особенностях передачи данных в сетях. Рассмотренная архитектура является упрощенной. Полная модель ОСИ включает дополнительные уровни: пользовательский, сервисный и т. д. Но для диагностики сетей чаще всего применяется именно упрощенный вариант OSI.
Хостинг сайтов в спб приходится приобретать любой уважающей себя компании. Это нужно для создания и дальнейшей раскрутки сайта. В компании Xelent клиентам на выбор доступна аренда виртуального или vps-сервера.
IaaS – решение, которое позволяет отказаться от использования физического оборудования и значительно сократить расходы компании.
Публичное облако позволяет быстро расширить ИТ-инфраструктуру без значительных вложений в модернизацию оборудования.






