Супрессор
Супрессор это одна из разновидностей полупроводниковых диодов.
А по своим функциям он больше всего похож на стабилитрон: он так-же открывается при определенном напряжении.
Супрессоры были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.
Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. На промышленных предприятиях комплексная защита имеется, но жилые дома в этом случае совершенно не защищены.
По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $ 12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.
Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.
Наименование TVS-диод переводится как V ransient V oltage S uppressor: полупроводниковый ограничитель напряжения.
Обозначение супрессора на схемах
Супрессоры имеют некоторые разновидности, а именно: они могут быть однонаправленными и двунаправленными. А на электрических схемах супрессоры обозначаются так:

Основные электрические параметры супрессоров
U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).
I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.
U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM(Working Peak Reverse Voltage). Может обозначаться как VRM.
U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VC – Max. Clamping Voltage или просто Clamping Voltage.
I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается какIPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!
P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).
Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).
Вольт-Амперные характеристики супресоров
ВАХ ограничительных диодов выглядят так:
Для однонаправленного супрессора

Для двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.
Схемы включения супрессоров
Одна из возможных схем включения супрессора:

В данном случае получается так: ограничительный диод (супрессор) VD1 установлен между двумя источниками напряжения. В случае возникновения большого импульса хотя-бы на одном входе он пробивается что приведет к перегоранию предохранителей F1 или F2. В промышленной радиоаппаратуре роль предохранителей могут исполнять низкоОмные керамические резисторы
Супрессор работа и устройство защитного диода
Защитный диод супрессор могут называть ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения и т.п. Супрессоры получили широкое распространение в импульсных блоках питания, где они выполняют функцию защиты от перенапряжения при дефектах импульсного блока питания. В этот статье подробно познакомимся с работой этого диода, изучим его принцип действия, а также разберемся в каких схемах и каким целям он служит.


Историческая справка: Супрессор был открыт в 1968 году для защиты аппаратуры от разрядов атмосферного электричества. Приборы Они применяются для защиты оборудования связи от разрушающих действий молний. Кроме того их используют для защиты в авиационном оборудование. Сегодня применение супрессоров является отличным способом защиты электронных схем от электрических импульсов разной природы, будь то обычный скачок напряжения от попадания молнии или повышенное напряжение из-за дефекта блока питания
Принцип действия супрессора (TVS-диода)
У этого защитного полупроводника интересная нелинейная вольт-амперная характеристика. Если амплитуда импульса превышает справочные данные, то он уйдет в режим лавинного пробоя. То есть супрессор ограничит электрический импульс до паспортной величины, а лишнее перетечет на землю через него.
TVS-диод может быть несимметричным и симметричным. Первые используются для работы только в сетях постоянного тока, т.к в рабочем состоянии попускают ток только в одном направлении. Симметричные супрессоры пропускают ток в обои стороны, и поэтому способны работать в сетях переменного тока. Несимметричный защитный ограничитель включается в схему по направлению, противоположному при установке обычных диодов, то-есть анод подключается к отрицательной шине, а катод – к положительной.
В случае повышения входного уровня защитный полупроводник за очень короткое время резко снижает свое внутреннее сопротивление. Ток в цепи резко увеличивается и происходит перегорание предохранителя. Так как супрессор срабатывает почти моментально, то основная схема не успевает перегореть. Отличительной фишкой TVS-диодов считается очень низкое время реакции на превышение уровня напряжения.
Основные электрические параметры супрессоров
U проб. (В) – напряжение пробоя. В отдельных справочниках обозначается как VBR. При этом напряжении диод резко открывается и уводит потенциал на общий провод.
I обр. (мкА) Это значение максимального обратного тока утечки. Он достаточно мал и практически не оказывает влияния на работу устройства.(IR)
U обр. (В) – постоянное обратное напряжение. (VRWM). U огр. имп. (В) – максимальное импульсное напряжение ограничения. (VCL или VC – Max.) I огр. мах. (А) – максимальный пиковый импульсный ток. (IPP). Говорит о том, какое максимальное значение импульса тока способен выдержать защитный диод без разрушения. Для мощных супрессоров это номинал может доходить до нескольких сотен ампер.
P имп. (Ватт) – максимальная допустимая импульсная мощность.
Огромным минусом супрессоров можно считать сильную зависимость максимальной импульсной мощности от продолжительности импульса. ТVS-диоды выпускаются с различными уровнями мощности. Однако, если этих номиналов недостаточно, то мощность можно увеличить, соединив последовательно несколько полупроводников. Так, при соединении двух, их общая мощность увеличивается в два раза.
Использовать ограничительные диоды можно и в роли стабилитронов. Но чтобы включать TVS-диоды таким образом в схему, требуется проверить справочные данные о значениях максимально рассеиваемой мощности, а также динамического сопротивления в условиях максимальных и минимальных возможных токов.
Супрессоры отличаются высоким показателем быстродействия. Время их срабатывания настолько мало, что импульсы «плохого» тока не успевают нанести повреждений оборудованию.
Супрессор
Обозначение, параметры и применение защитных диодов

Защитный диод (супрессор) 1.5KE15CA
Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов.
Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.
Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.
В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.
TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.
Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.
По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.
Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.
Обозначение на схеме.
На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 – симметричные; VD3 – однонаправленные).

Принцип работы супрессора (защитного диода).
У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а «излишки» уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.

До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники. У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.
Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).

Для однонаправленного супрессора схема выглядит чуть по-другому.

В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из «фишек» защитных диодов.
Основные электрические параметры супрессоров.
U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).
I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.
U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.
U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VC – Max. Clamping Voltage или просто Clamping Voltage.
I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!
P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).
Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).
Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.

ВАХ однонаправленного защитного диода (супрессора)

ВАХ двунаправленного супрессора
Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.
Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.
Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORB TM серии 1.5КЕ6.8 – 1.5КЕ440 (С)A. Они выпускаются как в симметричном, так и в несимметричном исполнении. Для симметричного диода к обозначению добавляется буква С или СА. У этой серии большой диапазон рабочих напряжений от 5,0 до 376 вольт, малое время срабатывания 1*10-9 сек, способность к подавлению импульсов большой мощности до 1500 Вт. Они прекрасно зарекомендовали себя в схемах защиты телевизионного, цифрового и другого современного оборудования.
Диоды выпускаются в корпусе DO-201.
Размеры указаны в дюймах и миллиметрах (в скобках). Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.
На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.

Диоды TRANSIL TM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSIL TM .
Двунаправленные диоды TRANSIL TM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.
Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.
Защитный диод, наиболее часто выполняемый из кремния, может носить название:
- Супрессора;
- Ограничительного стабилитрона;
- Диодный предохранитель;
- TVS-диода;
- Трансила;
- Полупроводникового ограничителя напряжений (ПОН) и т.д.
Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.
Существует несколько сфер современного применения ограничительных стабилитронов:
- Защита наземных приборов от воздействия природных явлений (удары молний);
- Защита авиатехники;
- Страховка от воздействия импульсов электрической природы при неисправности питающего блока.[/google_font]
Принципы действия
Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.
Рис 1 Защитный диод- принцип работы полупроводника
Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.
Существует два типа ограничительных стабилитронов:
Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.
Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.
Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.
Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.
Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.
Значимые характеристики защитных диодов
Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.
Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.
Значение является показателем постоянного обратного напряжения. VRWM.
Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.
Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.
Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2 ВА характеристики защитного диода
Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.
TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.
Проверка целостности защитного диода
Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода
Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.
В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.
Основные качества TVS-диодов
- Способность стабильно функционировать в условиях обратного напряжения;
- Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
- Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
- Максимально возможный показатель по уровню рассеиваемой мощности.
Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.
Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.
Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.
Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.
Области применения защитных диодов
Существуют несколько направлений, в которых может применяться супрессор:
- Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
- Телекоммуникации;
- Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
- Цифровой интерфейс.
Как правильно подобрать защитный диод?
Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:
Что такое защитный диод и как он применяется
Для защиты электронных схем и радиоаппаратуры от перенапряжения и скачков напряжения используются такие эффективные радиоэлементы, как диодный предохранитель (ПОН или TVS). Также защитный компонент известен под названиями супрессор и защитный диод. Такой эффективный прибор впервые был создан в 1968 году, в США, с целью защитить промышленное оборудование от электрических импульсов природного характера (молний).
Основанием для разработки целого класса полупроводниковых ограничителей напряжения послужили большие убытки из-за частого выхода из строя бытовой электроники, вызванного скачками напряжения. Примечательно, что супрессоры (от англ. Suppresor – «подавитель») обладают ярко выраженной нелинейной вольт-амперной характеристикой (ВАХ) и огромным быстродействием.

Принцип работы и устройство
Защитные диоды состоят из двух пластинок, выполненных из германия или кремния, обладающих разной электропроводимостью. Проволочные выводы электродов, как правило, припаиваются к металлическим слоям, нанесенным на внешние поверхности пластинок. Конструкция заключена в пластиковый, металлостеклянный или керамический корпус.
Принцип работы защитного диода основан на применении обратимого пробоя. Пока напряжение не превышает номинальное значение, ограничитель никакого существенного влияния на работу схемы не оказывает, но прибор перейдет в режим лавинного пробоя, как только электроимпульсная амплитуда превысит базисное напряжение. Таким образом, размер амплитуды нормируется, а все излишнее напряжение при этом уходит на землю через сам ограничитель.

Виды и обозначение
Существует два основных вида защитных диодов TVS:
- симметричные (двунаправленные) – активно эксплуатируются в цепях с двуполярным напряжением, что позволяет использовать их в сетях переменного тока;
- несимметричные (однонаправленные) – эффективно защищают цепи с напряжением одной полярности, что позволяет использовать их в сетях постоянного тока.
На схемах супрессоры обозначаются как VD1, VD2 (двунаправленные) и VD3 (несимметричные). Номинальное напряжение таких диодных предохранителей варьируется от 6.8 до 440 вольт. А рабочая температура колеблется от -65 до +175 градусов по Цельсию. Высокая скорость срабатывания надежно защищает оборудование от перенапряжения. Корпус диодного предохранителя снабжается маркировочным кодом, отображающим все важные параметры изделия.
Маркировка защитных диодов позволяет выбрать наиболее подходящий радиоэлемент для сетей постоянного или переменного тока. Несимметричные изделия имеют на корпусе цветное маркировочное кольцо. Цифры и буквы, как правило, сообщают о мощности, напряжении пробоя, а также допустимом отклонении напряжения.

Основные параметры защитных диодов
Диоды супрессоры имеют целый ряд основных электрических параметров:
- PPP или P имп. (измеряется в Ваттах) – максимальная импульсная мощность изделия показывает, какую мощность способен подавить полупроводниковый ограничитель;
- IR или I обр. (измеряется в микроамперах) – значение постоянного обратного тока утечки, который, как правило, не оказывает существенного влияния на работу схемы;
- VCL, VC или U огр. имп. (измеряется в Ваттах) – значение максимально допустимого импульсного ограничения напряжения;
- VBR или U проб. (измеряется в Ваттах) – обозначает напряжение пробоя, при котором супрессор напряжения отводит опасный импульс тока на общий провод;
- VRWM или U обр. (измеряется в Ваттах) – обозначает параметр постоянного обратного напряжения;
- IPP или I огр. мах. (измеряется в амперах) – параметр предоставляет информацию о максимальном пиковом импульсном токе. То есть, о том, какое значение способен выдержать лавинный диод.
Чтобы определить значение максимальной импульсной мощности, потребуется перемножить значение максимального пикового импульсного тока со значением максимального импульсного напряжения ограничения. Важно понимать, что все характеристики супрессора являются таковыми только в конкретных температурных условиях, поскольку при более высоких температурах токи, а также допустимая пиковая мощность будут непременно уменьшаться.

Особенности защитных диодов
Среди особенностей защитных диодов выделяют ряд пунктов:
- предоставляется максимально возможный показатель по уровню рассеиваемой мощности;
- возможность стабильного функционирования в условиях воздействия обратного напряжения;
- должен соблюдаться минимально возможный уровень скорости реакции на быстрое критическое воздействие;
- чтобы не оказывать влияния на функциональность прибора, обратные токи должны соответствовать действительно минимальным показателям.
Несмотря на высокую эффективность, супрессор нельзя назвать стопроцентным защитным ограничителем. Во-первых, в положении «выключено» такие приборы характеризуются значительными обратными токами. Во-вторых, в ограничивающем режиме в прямую зависимость от силы тока попадает уровень напряжения. В-третьих, нельзя забывать о сильной зависимости максимальной импульсной мощности от продолжительности импульса (длительности).
Для усовершенствования схемы существует практика последовательного соединения нескольких полупроводников, что дает увеличение мощности. Защитные диоды TVS часто используют совместно с самовосстанавливающимися предохранителями либо в специальных сборках, в которые уже включены предохранители такого типа.
Области применения диодов
Такие радиоэлементы активно применяются в различных направлениях:
- средства связи и телекоммуникации;
- цифровые интерфейсы;
- различная силовая электроника;
- бытовые электроприборы;
- разнообразные схемы управления.
Лавинные диоды широко применяются для защиты бортовой электроники транспортных средств. Например, система зажигания любого автомобиля является одной из самых сильных источников электрических импульсов. Отечественные защитные диоды (Кремний, СЗТП, Фотон, НТЦ СИТ, Саранск, ТОР, Россия и другие) не уступают по качеству, эффективности и доступности зарубежным аналогам.
Как проверить защитный диод
Данный ограничитель может выполнять функцию стабилитрона, но перед использованием очень важно проверить два определенных параметра: динамический ток и рассеиваемую мощность. Целостность проверяется при помощи компактного измерительного прибора – мультиметра. При такой проверке рекомендуется использовать устройство исключительно в режиме прозвонки (со звуковым сигналом).

Положительный (красный) щуп соединяем с анодом супрессора, а отрицательный (черный), соответственно, с катодом. Число на дисплее будет обозначать пороговое напряжение проверяемого диода. В зависимости от типа ограничителя напряжение может составлять от 100 до 1000 милливольт. Если смена полярности дает бесконечную величину, то элемент можно считать исправным и готовым к работе. Утечка свидетельствует о необходимости замены защитного компонента.
Если не знаете, как и чем заменить защитный диод, всегда можно обратиться в сервисный центр или пункт ремонта различной электроники. В интернете множество советов и инструкций по замене диодного предохранителя стабилитроном и быстродействующим диодом, но, не имея необходимых знаний и практического опыта, не рекомендуется совершать такие операции самостоятельно. Проверку следует выполнять осторожно, поскольку создание условий срабатывания приведет к выходу защитного компонента из строя.
Как правильно подобрать супрессор
Чтобы не ошибиться в выборе данного прибора, следует придерживаться простых рекомендаций:
- установить уровень номинального напряжения на линии;
- определить, как именно будет осуществляться монтаж элемента;
- определить тип напряжения, а также установить, что обратное напряжение превышает номинальное напряжение схемы;
- выявить допустимые пределы рабочих температур;
- решить, какой именно тип диода потребуется (симметричный или несимметричный);
- определиться с наиболее подходящей серией и вариантом изделия.
Кроме того, перед покупкой рекомендуется дополнительно удостовериться в том, что габариты и параметры радиоэлемента соответствуют требованиям и нюансам монтажа.
Применение современных защитных диодов на схемах отличается высокой эффективностью защиты любого электрооборудования, которое подключено к воздушным линиям.
Дешевые варисторы или дорогие TVS-диоды?
Варисторы и супрессоры (TVS-диоды) — хорошо известные компоненты, широко распространенные в электронной аппаратуре для защиты от импульсных перенапряжений. Когда речь заходит о мощных, но очень коротких импульсах наносекундного диапазона с крутыми передними фронтами, такими как ЭМИ ЯВ, возникает вопрос о применимости варисторов и TVS-диодов для данной цели. Поскольку в технической литературе не отражено единое мнение об этом, автором самостоятельно выполнены экспериментальные исследования, результаты которых представлены в статье.
Введение
Для защиты электронной аппаратуры от импульсных перенапряжений нашли широкое применение различные виды элементов с нелинейной вольтамперной характеристикой, уменьшающие свое сопротивление под действием приложенного импульса напряжения. Наибольшее распространение получили три вида подобных элементов: газовые разрядники, варисторы и так называемые супрессоры (Transient Voltage Suppressor — TVS), выполненные на основе лавинных диодов и поэтому часто называемые «TVS-диоды». Газовые разрядники имеют относительно большое время реакции на приложенный импульс напряжения, и, кроме того, их напряжение пробоя очень сильно увеличивается с повышением скорости нарастания переднего фронта импульса. Поэтому они применяются очень ограниченно. Значительно чаще используются оксидноцинковые варисторы и TVS-диоды, свободные от этих недостатков газовых разрядников. Преимущество варисторов и TVS-диодов становится особенно актуальным при необходимости обеспечения защиты от мощных импульсов перенапряжения наносекундного диапазона. Такой импульс возникает на входах и выходах электронной аппаратуры под воздействием высотного ядерного взрыва. Электромагнитный импульс высотного ядерного взрыва (ЭМИ ЯВ) с параметрами 2/25 нс создает у поверхности земли напряженность электрического поля, доходящую до 50 кВ/м, а многочисленные кабели, подключенные к электронной аппаратуре промышленного назначения, абсорбируют электромагнитную энергию с большой площади и доставляют ее прямо на входы чувствительной электронной аппаратуры. Амплитуда импульса, возникающего на входах этой аппаратуры, значительно превышает амплитуду обычных коммутационных и атмосферных перенапряжений, защита от которых предусмотрена в аппаратуре. Вот почему для обеспечения надежной защиты от ЭМИ ЯВ требуются дополнительные внешние средства защиты, которыми могут быть варисторы и TVS-диоды.
Однако мощные TVS-диоды не дешевые элементы. Их стоимость доходит до $100–150 и более за штуку, тогда как варисторы той же мощности примерно в 80–100 раз дешевле. Когда речь идет о включении дополнительных защитных элементов параллельно каждому входу и выходу электронной аппаратуры с десятками входов и выходов, например такой, как микропроцессорные реле защиты в электроэнергетике, становится понятной актуальность вопроса, вынесенного в заголовок статьи. Если дешевые варисторы справляются с проблемой не хуже, чем значительно более дорогие TVS-диоды, понятно, что преимущество должно быть отдано именно им. Вопрос лишь в том, а действительно ли они справляются с проблемой не хуже, чем TVS-диоды?
Варисторы против TVS-диодов
Если попробовать проанализировать публикации в технической литературе, содержащие сравнительную оценку способности варисторов и TVS-диодов защищать от коротких импульсных перенапряжений наносекундного диапазона, то ничего утешительного мы из анализа этих публикаций не получим, поскольку они содержат прямо противоположные выводы. Например, в [1] TVS-диоды отнесены к быстродействующим защитным элементам, а варисторы — к медленнодействующим. В [2] TVS-диоды
отнесены к быстродействующим элементам, а варисторы к «умеренно быстрым». В [4] приведены вообще фантастические данные о быстродействии TVS-диодов: 0,01 нс, при этом отмечается, что варисторы срабатывают примерно в 50–100 раз медленнее. В [5] утверждается, что TVS-диоды имеют значительно более высокое быстродействие, в то время как в статье [6] на основе результатов экспериментальных исследований серийных образцов варисторов и TVS-диодов утверждается прямо противоположное. Из неопубликованных в открытой печати отчетов известно об экспериментальных исследованиях пригодности варисторов для защиты от ЭМИ ЯВ и о полученных положительных результатах этих исследований, вопреки многочисленным утверждениям о недостаточном быстродействии варисторов.
В связи с существующей неопределенностью и отсутствием однозначно подтвержденных данных автором были проведены самостоятельные исследования.
Испытания мощных защитных элементов в условиях, приближенных к реальным
В реальных условиях эксплуатации промышленного электронного оборудования, расположенного в металлических шкафах, к входам и выходам которого подключены длинные кабели, параметры цепей, подвергающиеся воздействию ЭМИ ЯВ, будут совершенно не такими, как в стерильных лабораторных условиях.
В связи с чем нами были проведены собственные исследования на макете, конструкция которого хоть както отражает реальные условия (рис. 1).

Рис. 1. Внешний вид макета с установленными испытуемыми элементами и схема испытаний
В процессе испытаний на макете менялся испытуемый защитный элемент (варистор MOV и супрессор TVS), длина соединительного проводника (0,1 и 1 м). Исследовался варистор типа B72220S0600K101 с номинальным напряжением 60 В (85 В на постоянном токе), остаточным напряжением 165 В, емкостью 3600 пФ, а также эквивалентный ему по мощности диодный супрессор типа PTVS10076TH с напряжением срабатывания 85–95 В, остаточным напряжением 140 В и емкостью 5600 пФ.
В макете использовались широко применяемые в шкафах с аппаратурой клеммные колодки, монтажный провод, печатная плата, соответствующая по размерам реальной конструкции, на которой будут установлены в шкафу защитные элементы (варисторы или TVS-диоды). Совершенно очевидно, что при такой конструкции макета его высокочастотные параметры (емкость, индуктивность, волновое сопротивление) очень далеки от совершенных и от согласованных с выходом генератора импульсов и входом осциллографа.
В связи с этим оказалась практически невозможной одновременная запись на импульсном осциллографе сигнала, подаваемого с генератора, и сигнала, остающегося на защитном элементе, таким образом, чтобы оба сигнала позволяли оценить свойства защитных элементов и сравнить их между собой, как планировалось заранее. Поэтому в процессе испытания сначала записывался калибровочный импульс с выпаянным из печатной платы защитным элементом. Потом защитный элемент возвращался на место и повторно проводилась запись сигнала без внесения каких бы то ни было изменений в схему или переключений в ней. Полученные осциллограммы показаны на рис. 2.

Рис. 2. Осциллограммы, полученные при испытании двух типов защитных элементов:
TVS-диода (TVS) и варистора (MOV) на макете с короткими проводниками (длиной 0,1 м);
RT — rise time (время нарастания переднего фронта импульса)
Калибровочный импульс, подаваемый на макет без защитного элемента, сохранял высокую скорость нарастания (rise time — RT) в диапазоне единиц наносекунд, хотя длительность импульса увеличилась до сотни наносекунд. Оба испытуемых защитных элемента срезали амплитуду входного импульса до уровня, примерно соответствующего их напряжению срабатывания. Причем скорость нарастания амплитуды импульса на этих элементах претерпела существенные изменения и уменьшилась примерно в пять раз, что можно, по-видимому, объяснить влиянием емкости самих защитных элементов.
На рис. 3 показаны результаты испытаний защитных элементов с длинным проводом на входе. Как можно видеть из представленных осциллограмм, скорость нарастания калибровочного импульса не изменилась, но скорость нарастания импульса на защитных элементах еще более уменьшилась по сравнению с коротким проводом. Как и прежде, оба защитных элемента успевают сработать и ограничить амплитуду входного импульса. Уровень ограничения напряжения несколько возрос по сравнению с предыдущим экспериментом, что связано с увеличением амплитуды напряжения входного импульса и, соответственно, тока, протекающего через защитные элементы после их срабатывания.

Рис. 3. Осциллограммы испытаний двух типов защитных элементов:
супрессора (TVS) и варистора (MOV) на макете с длинными проводниками (длиной 1 м);
RT — rise time (время нарастания импульса)
И наконец, последним тестировался варистор с длинным проводом (рис. 4). Испытания проводились с увеличенной до 2 кВ амплитудой тестового импульса. Из полученной осциллограммы можно заметить, что остаточное напряжение на варисторе значительно ниже амплитуды приложенного импульса (2 кВ), это означает, что варистор успешно сработал и срезал данный импульс. Однако нельзя не заметить, что амплитуда остаточного напряжения на варисторе впервые в эксперименте превысила, причем существенно, нормируемое в справочных данных значение (165 В).

Рис. 4. Осциллограммы работы варистора при воздействии испытательного импульса с амплитудой 2 кВ.
FWHM (Full Width at Half Maximum) — ширина импульса на половине амплитуды
Что это означает? Для ответа на поставленный вопрос нужно разобраться в том, что такое остаточное напряжение (clamping voltage) на импульсном защитном элементе, нормируемое производителем для каждого типа элемента. По логике, это должно быть напряжение, оставшееся на защитном элементе после его срабатывания, то есть то напряжение, которое будет прикладываться к защищаемому этим элементом оборудованию. Именно так и есть. Но тогда как объяснить существенное увеличение этого самого clamping voltage в нашем эксперименте относительно значения, записанного в паспортных данных варистора? Оказывается, поскольку характеристики варисторов весьма далеки от идеальных, производители пошли на маленькую хитрость и приводят в справочных данных значения clamping voltage для тока, гораздо меньшего (1% и ниже), чем тот, на который рассчитан варистор (табл. 1). А поскольку падение напряжения на защитном элементе зависит от тока, протекающего по нему, то совершенно очевидно, что для малых значений тока и clamping voltage будет небольшим. В описанном выше эксперименте импульс тока, протекающий через варистор при подаче на него напряжения 2 кВ, превысил то значение тока, при котором производитель измерял clamping voltage, и поэтому реальное остаточное напряжение на варисторе оказалось больше нормируемого. Но ведь из этого следует, что в реальных условиях эксплуатации при заранее не известной амплитуде тока, который будет протекать через варистор после его срабатывания, невозможно предварительно узнать, какое напряжение останется на нем, то есть на защищаемом оборудовании! При импульсных токах в несколько килоампер, на которые рассчитаны мощные варисторы, остаточное напряжение на них может достигать нескольких киловольт! А в случае воздействия мощного ЭМИ ЯВ эффективность защиты, построенной на основе варисторов, оказывается вообще непредсказуемой, причем вне всякой связи с их быстродействием. Но в случае с TVS-диодами такой проблемы не существует, поскольку, за редким исключением специальных типов диодов, производители указывают в паспортных данных значение остаточного напряжения при протекании через них максимального импульсного тока, на который они рассчитаны (табл. 1).
Максимальная амплитуда тока для
стандартного импульса 8/20 мкс
Амплитуда тока, используемого
для измерения остаточного напряжения
(для импульса 8/20 мкс)
Амплитуда тока, используемого
для измерения остаточного напряжения, в % от заявленной максимальной амплитуды тока
Супрессор (TVS)
Зажимное устройство, которое ограничивает переходные скачки напряжения через низкий импеданс, приводит к разрушению прочного кремниевого PN -перехода. Используются для защиты чувствительных компонентов от электрического перенапряжения, например, вызванных ударами молнии, переключением индуктивной нагрузки и электростатическим разрядом ( ESD ). Для выбросов высоких энергий используют газовые разрядники и защитные тиристоры. Для помех средней и малой мощности применяют TVS-диоды .
Преимущества диодов TVS в приложениях защиты цепей
— Широкие требования к диапазону рабочих температур от 400 Вт до 10 кА
— Быстрая реакция: 1-5 нс
Создали их в связи с потребностями в защите цепей в систем общей электроники.
Для чего?
— Резкое изменение электрического состояния любой схемы может вызвать генерирование переходного напряжения из энергии, сохраненной в ее индуктивности и емкости. Скорость изменения тока в катушке будет создавать коммутируемое индуцированное переменное напряжение.
— Подача питания на первичный трансформатор
Когда трансформатор находится под напряжением в пике напряжения питания, соединение этой ступенчатой функции напряжения с паразитной емкостью и индуктивностью вторичной обмотки может генерировать колебательное переходное напряжение с максимальной амплитудой до удвоенного нормального пикового вторичного напряжения.
— Отключение питания первичной обмотки трансформатора
Отключение первичной цепи трансформатора вызывает экстремальные переходные процессы напряжения. Частоты переходных процессов, часто превышающие нормальное, наблюдались в силовых полупроводниках, когда происходит такой тип переключения.
— Неисправность с индуктивным источником питания
Если короткое замыкание происходит в любой энергосистеме, устройства, параллельные нагрузке, могут быть уничтожены, когда плавкий предохранитель не справляется.
Когда ток в индуктивном контуре прерывается контактором, индуктивность пытается поддерживать свой ток, заряжая паразитную емкость.
Типичный метод защиты цепи диодом TVS

— Устройство используется в обратном направлении пробоя.
— Устройство включается, когда переходное напряжение превышает VBR (Напряжение обратного пробоя).
— Устройство остается в состоянии с высоким импедансом, а напряжение ниже VBR .
Для однонаправленного TVS -диода анод устройства должен быть заземлен, а катод подключен непосредственно к защищаемой линии. Когда положительный импульс подается на схему, диод TVS включается (инверсное лавинообразное состояние). Уровень выходного напряжения определяется спецификацией Vc диода TVS (в диапазоне от 3 до 200 вольт)

Когда на схему подается отрицательный импульс, включается диод TVS (положительное проводящее состояние PN -перехода). Уровень выходного напряжения определяется прямым смещающим напряжением PN -перехода (в диапазоне от 0 до 2 вольт).
Vc (напряжение зажима)
Напряжение на диоде TVS на IPP (пиковый импульсный ток)
VBR (обратное напряжение пробивания)

Напряжение, при котором диод включается (проводящее состояние)
VRWM (Напряжение обратного отключения)
Напряжение, при котором диод выключается (состояние высокого импеданса)
Электрические характеристики диода TVS
Максимальная пиковая мощность импульса ( PPPM )

Максимальная пиковая импульсная мощность — это неповторяющаяся мощность, рассеиваемая в диоде TVS для определенного импульса

Пиковая импульсная мощность

Максимальная пиковая импульсная мощность определяется путем подачи сигнала двойного экспоненциального тока на диод TVS . Типичная форма волны, используемая для тестирования, — 8 x 20µ s и 10 x 1000 µ s .


Двухполярный и однополюсный чип TVS

Эпоксидный компаунд

Свинцовая рамка

Ni / Au покрытие и припой

Стеклянная пассивация

Кремниевый чип






