1. История развития вычислительной техники 17-19 века
Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более (1500) лет тому назад для счёта использовались счётные палочки, камешки.
Сын сборщика налогов Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчёты своего отца.
В (1642) г., когда Паскалю было всего (19) лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте (39) лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ.
Суммирующая машина Паскаля, « П аскалина », представляла собой механическое устройство — ящик с многочисленными шестерёнками.
При работе на «Паскалине» складываемые числа вводились путем соответствующего поворота наборных колёсиков. Каждое колёсико с нанесёнными на него делениями от (0) до (9) соответствовало одному десятичному разряду числа — единицам, десяткам, сотням и т. д.
Избыток над (9) колёсико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колёсико на (1) вперёд.

«Паскалина» вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее, изобретённый им принцип связанных колёс явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трёх столетий.
Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц .

В (1672) г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчёты.
Поскольку это недостойно таких замечательных людей, — писал Лейбниц, — подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины.

Сложение производилось на нём по существу так же, как и на «Паскалине», однако Лейбниц включил в конструкцию движущуюся часть и ручку, с помощью которой можно было крутить ступенчатое колесо или — в последующих вариантах машины — цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел.
Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил её китайскому императору, желая поразить того европейскими техническими достижениями.
В (1812) году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы.
Свою первую разностную машину Бэббидж построил в (1822) году и рассчитывал на ней таблицу квадратов, таблицу значений функции y = x 2 + x + 41 и ряд других таблиц.
Главное её отличие от разностной машины заключалось в том, что она была программируемой и могла выполнять любые заданные ей вычисления.
По существу аналитическая машина стала прообразом современных компьютеров, так как включала их основные элементы: память, ячейки которой содержали бы числа, и арифметическое устройство, состоящее из рычагов и шестерёнок.
Бэббидж предусмотрел возможность вводить в машину инструкции при помощи перфокарт. Однако и эта машина не была закончена, поскольку низкий уровень технологий того времени стал главным препятствием на пути её создания.
Паскалина Описание и характеристики, эксплуатация
pascalina, Также известный как арифметическая машина, он является первым калькулятором, который был выпущен, а затем стал аппаратом, используемым населением. Это прямоугольник с интерфейсом на основе вращающихся колес. Паскалина получает свое имя от своего изобретателя, Блеза Паскаля.
Паскаль был французским математиком и философом, которому удалось развить артефакт после трех лет создания, между 1642 и 1645 годами. Поскольку это был довольно простой продукт, он мог только складывать и вычитать цифры; пользователь выбрал фигуру в интерфейсе. Француз изобрел этот продукт изначально, чтобы помочь своему отцу, сборщику налогов.

Однако за 10 лет Паскаль выпустил 50 одинаковых машин для раздачи различным людям в Европе. Паскалин считается первой машиной, созданной для коммерческих целей, не считая счет, созданный греками за несколько веков до этого..
- 1 Кто это изобрел, когда и как?
- 1.1 Руан
- 2.1 Внешняя сторона
- 2.2 Каркас и материалы
- 3.1 Внутренняя часть
- 3.2 Другие механизмы
- 3.3 Рычаг
- 4.1 Вдохновение
Кто это изобрел, когда и как?
Паскалина была создана Блезом Паскалем между 1642 и 1645 годами. После ее кульминации король Франции гарантировал Паскалю, что только он сможет производить паскалины, чтобы продавать их по королевской привилегии..

Тем не менее, артефакт никогда не был коммерчески успешным. Это было потому, что было очень дорого разрабатывать самостоятельно, потому что механизмы было очень трудно создать в то время (до промышленной революции).
По этой причине владельцы этих объектов обычно размещают их в своих собственных домах, а не в своих офисах. Они использовались в качестве личных инструментов, что делало их относительно эксклюзивными.
Паскаль создал объект, чтобы помочь своему отцу в его расчетах рассчитывать налоги. В то время для подсчета использовались некие счеты, что было непрактично, и процесс шел довольно медленно..
Счеты состояли из серии камней, которые пользователь должен был перемещать с одной стороны на другую, чтобы иметь возможность эффективно считать. Инструмент Паскаля, разработанный во Франции, был использован для расчета механизированных и гораздо проще, уменьшая предел человеческой ошибки.
Руанский
Паскаль разработал машину с помощью некоторых ремесленников из города Руана, во Франции. Фактически, по словам сестры изобретателя, самой большой проблемой, с которой сталкивался Паскаль, было объяснение ремесленникам Руана, как правильно разработать машину..
Хотя ремесленники помогли Паскалю создать более одной машины, они заставили изобретателя немного потерять голову, потому что им было трудно понять идеи Паскаля..
Паскаль разработал этот продукт, будучи очень молодым человеком; ему было всего 18 лет, когда он впервые создал свой механический калькулятор.
Описание и характеристики
Внешняя часть
Паскалина — это прямоугольная коробка длиной примерно 30 сантиметров и высотой 8 сантиметров. В верхней части машины есть 8 вращающихся дисков, которые разделены в зависимости от количества единиц, с которыми работает каждый..
В каждом диске есть в общей сложности два колеса, которые служат для определения количества, с которым работает каждый. Над каждым диском есть номер, который меняется в зависимости от того, как размещено каждое колесо..
Каждое из чисел находится за небольшим окном (то есть отверстием, которое позволяет увидеть число, нарисованное на листе бумаги)..
Есть небольшая металлическая полоса с одной стороны от того, где расположены цифры, которые должны быть расположены вверх, если вы хотите использовать машину для добавления.
Тушка и материалы
Часть, ответственная за скрепление всего паскалина, то есть коробка, в которой находятся все механизмы, была сделана из дерева..
С другой стороны, внутренние материалы, которые формировали механизмы, делались из кусочков железа, что позволяло машине работать оптимально.
Как это работает?
Внутренняя часть
Внутренняя часть паскалины — это та, которая соответствует всей системе подсчета, которая позволяет артефакту вычислять суммы и вычитания. Этот счетный механизм регистрирует количество колесных спиц, выполняемых за каждый оборот..
Самая сложная часть механизма заключается в том, что когда одно из колес совершает полный оборот (то есть суммирует все числа, которые оно допускает), оно должно записывать полный оборот на следующем колесе. Таким образом, можно добавить цифры больше 10 чисел.
Это движение, которое позволяет зафиксировать полный возврат одного из механизмов к другому смежному механизму, называется передачей.
Чем больше число, с которым вы работаете, тем сложнее для механизма работать правильно.
Например, при работе с несколькими числами, которые приводят к значению, превышающему 10 000, колесо, которое должно зарегистрировать «1» из «10 000», должно быть способно регистрировать смену других 4 колес, несущих «0» из « 10 000 «.
Эта запись, как правило, довольно сложная, потому что она оказывает большое давление на колесо «1». Тем не менее, Паскаль разработал систему, способную противостоять давлению перемен, что позволяет аскалину эффективно работать.
Другие механизмы
Паскаль использовал специальную деталь, которая служила специально для выполнения работы транспорта между одним колесом и другим. Это был специальный рычаг, который использовал ту же силу тяжести, что и толкающая сила для передачи информации от одного к другому.
Всего есть 5 механизмов, и каждый содержит 2 колеса, что в общей сложности составляет 10 колес. Каждое колесо имеет 10 маленьких штифтов, которые выходят из бумаги для записи чисел.
Объясняя все простым способом, правое колесо каждого механизма рассматривается как колесо единиц, а левое колесо — как колесо десятков. Каждые 10 оборотов правого колеса представляют собой одно из левого колеса (то есть 10 единиц представляют собой десяток).
Все колеса вращаются против часовой стрелки. Кроме того, существует механизм, который действует в виде рычага, который останавливает движение колес, когда не производится никакого сложения или вычитания..
С помощью этого механизма Паскаль сделал колеса Паскалина, можно было только размещать в фиксированных положениях, что предотвращало нерегулярное движение кусков. Таким образом, расчеты были более точными и погрешность машины была уменьшена.
рычаг
Между каждым механизмом есть рычаг, который обычно называют рычагом передачи. Этот рычаг помогает колесам регистрировать вращение всех соседних колес..
Это колесо состоит из ряда различных частей, что позволяет его работу. Кроме того, он может вращаться независимо от колеса, к которому он прикреплен. Это движение определяется штифтом передачи, который прикреплен к колесу.
Рычаг имеет несколько пружин и небольшие механизмы, которые позволяют ему менять положение, так как вращение колес определяет его необходимость..
Пружина и деталь, специализирующаяся на нажатии рычага, заставляют его двигаться в зависимости от направления вращения каждого колеса..
В ходе этого процесса, когда левое колесо заканчивает поворот, правое колесо перемещается один раз (к следующему выводу из 10 выводов).
Это довольно сложный механизм. Дизайн был особенно трудным для того времени, что делало каждую деталь довольно сложной, а паскалина была очень дорогим объектом; во многих случаях было дороже купить паскалин, чем платить за пропитание семьи среднего класса в течение целого года.
Для чего это было??
Машинный процесс в основном позволял эффективно складывать и вычитать двузначные числа, не прибегая к системам ручного расчета..
В то время было очень распространено вычислять цифры, используя письменные или просто используя счеты для выполнения индивидуальных расчетов.
Тем не менее, эти системы привыкли принимать людей долгое время. Например, отец Паскаля вернулся домой после полуночи, проведя большую часть своего дня, считая цифры вручную. Паскаль разработал этот инструмент, чтобы ускорить работу расчета.
Хотя инструмент работал как средство сложения и вычитания, также можно было делить и умножать, используя паскалин. Это был немного более медленный и более сложный процесс для машины, но он сэкономил время пользователя.
Для умножения или деления машина добавляла или вычитала — соответственно — несколько раз один и тот же код, который был заказан. Сложение и повторное вычитание позволили владельцу паскалины выполнять более сложные расчеты с помощью этой машины..
вдохновение
Кроме того, разработка паскалина послужила вдохновением для будущих изобретателей для создания нового арифметического механизма расчета..
В частности, паскалина считается главным предшественником более сложных механизмов, таких как современные калькуляторы и колеса Лейбница..
История суммирующей машины Паскаля

Гениальные люди гениальны во всем. Это расхожее утверждение в полной мере применимо к французскому ученому Блезу Паскалю. В исследовательские интересы изобретателя входила физика и математика, литература и философия. Именно Паскаля считают одним из основателей математического анализа, автором основного закона гидродинамики. Известен он и в качестве первого создателя механических вычислительных машин. Эти устройства — прототипы современных ЭВМ.
На тот момент модели были во многом уникальны. По своим техническим особенностям они превзошли многие аналоги, придуманные до Блеза Паскаля. Какова история «Паскалины»? Где можно встретить эти конструкции сейчас?

Первые прототипы
Попытки провести автоматизацию вычислительных процессов проводились давно. Сильнее всего в этих вопросах преуспели арабы и китайцы. Именно они считаются первооткрывателями такого приспособления, как абак. Принцип действия достаточно прост. Для проведения расчета необходимо переложить кости с одной части на другую. Изделия дополнительно позволяли проводить операции вычитания. Неудобства первых арабских и китайских абаков были связаны только с тем, что камни легко рассыпались во время переноса. В некоторых магазинах в глубинке до сих пор можно встретить простейшие виды арабских абаков, правда, сейчас их называют счетами.

Актуальность проблемы
Свою машину Паскаль начал проектировать в 17 лет. На мысли о необходимости автоматизировать рутинные вычислительные процессы подростка натолкнул опыт собственного отца. Дело в том, что родитель гениального ученого работал сборщиком налогов и долгое время просиживал за утомительными расчетами. Само проектирование заняло долгое время и потребовало от ученого больших физических, умственных и материальных вложений. В последнем случае помощь Блезу Паскалю оказал собственный отец, который быстро понял преимущества разработки сына.
Конкуренты
Естественно, в то время о применении каких-либо электронных средств вычисления и речи не шло. Все осуществлялось только за счет механики. Использовать вращение колес для проведения операции сложения было предложено задолго до Паскаля. Например, не меньшей популярностью в свое время пользовалось устройство, созданное в 1623 году Вильгельмом Шиккардом. Однако в машине Паскаля были предложены определенные технические новшества, заметно упрощающие процесс сложения. Например, французский изобретатель разработал схему автоматического переноса единицы при переходе числа в высший разряд. Это позволило складывать многозначные цифры без вмешательства человека в счетный процесс, что практически исключило риск ошибок и неточностей.
Внешний вид и принцип действия
Визуально первая суммирующая машина Паскаля напоминала обыкновенный металлический ящик, в котором располагались связанные друг с другом шестеренки. Пользователь через поворот наборных колес устанавливал необходимые ему значения. На каждое из них наносились цифры от 0 до 9. При совершении полного оборота шестерня сдвигала соседнюю (соответствующую более высокому разряду) на одну единицу.

Самая первая модель обладала всего пятью зубчатыми колесами. Впоследствии счетная машина Блеза Паскаля претерпела некоторые изменения, касающиеся увеличения количества шестерен. Их появилось 6, затем это число возросло до 8. Такое нововведение позволило проводить исчисления вплоть до 9 999 999. Ответ же появлялся в верхней части устройства.
Операции
Колеса в счетной машине Паскаля могли вращаться только в одну-единственную сторону. В результате чего пользователь был способен провести исключительно операции сложения. При некоторой сноровке устройства адаптировали и под умножение, но выполнить расчеты в этом случае было заметно сложнее. Возникала необходимость несколько раз подряд складывать одни и те же числа, что было крайне неудобно. Невозможность осуществить вращение колеса в обратную сторону не позволяла проводить вычисления с отрицательными числами.

Распространение
С момента создания прототипа ученый сделал около 50 устройств. Механическая машина Паскаля вызвала небывалый интерес во Франции. К сожалению, широкого распространения изделие так и не смогло завоевать, даже несмотря на резонанс у широкой общественности и в научных кругах.
Главная проблема изделий заключалась в их дороговизне. Производство было затратным, естественно, это отрицательным образом складывалось и на итоговой цене всего прибора. Именно сложности с выпуском привели к тому, что ученый за всю свою жизнь смог продать не более 16 моделей. Люди по достоинству оценили все преимущества автоматического исчисления, но брать приборы не хотели.
Банки
Основной акцент при реализации Блез Паскаль ставил именно на банки. Но финансовые учреждения в большей своей массе отказались приобретать машину для автоматических расчетов. Проблемы возникли из-за сложной денежной политики Франции. В стране на тот момент существовали ливры, денье и су. Одна ливра состояла из 20 су, а су из 12 денье. То есть, десятичная система исчисления отсутствовала как таковая. Именно поэтому использовать машину Паскаля в банковской сфере в реальности было практически невозможно. На принятую в других странах систему исчисления Франция перешла только в 1799 году. Однако и после этого времени применение автоматизированного устройства было заметно осложнено. Это уже касалось упомянутых ранее трудностей в производстве. Труд в основном был ручным, поэтому каждая машина требовала кропотливой работы. В итоге их просто перестали изготавливать в принципе.

Поддержка властей
Одну из первых автоматических счетных машин Блез Паскаль подарил канцлеру Сегье. Именно этот государственный деятель оказал поддержку начинающему ученому на первых этапах создания автоматического устройства. При этом канцлер сумел добиться от короля привилегий на выпуск данного агрегата именно для Паскаля. Хоть изобретение машины всецело принадлежало самому ученому, патентное право в то время во Франции было не развито. Привилегия от монаршей особы была получена в 1649 году.
Продажи
Как было сказано выше, большого распространения машина Паскаля не завоевала. Сам ученый занимался только изготовлением устройств, за продажу отвечал его друг Роберваль.
Развитие
Принцип вращения механических шестерен, реализованный в вычислительной машине Паскаля, был взят за основу и при разработке других аналогичных устройств. Первое удачное усовершенствование приписывают немецкому профессору математики Лейбницу. Создание арифмометра датировано 1673 годом. Сложения чисел выполнялись также в десятичной системе, но само устройство отличалось большим функционалом. Дело в том, что с его помощью можно было не только проводить сложение, но также умножать, вычитать, делить и даже извлекать квадратный корень. Ученый добавил в конструкцию специальное колесо, которое позволяло ускорять повторяющиеся операции по сложению.

Свое изделие Лейбниц презентовал во Франции и Англии. Одна из машин даже попала к русскому императору Петру Первому, который подарил ее китайскому монарху. Изделие было далеко от совершенства. Колесо, которое изобрел Лейбниц для проведения вычитания, впоследствии стало использоваться и в других арифмометрах.

Первый коммерческий успех механических вычислительных машин датирован 1820 годом. Калькулятор создал французский изобретатель Шарль Ксавье Томас де Кольмар. Принцип действия во многом напоминает машину Паскаля, но само устройство отличается меньшими размерами, оно немного проще в изготовлении и дешевле. Именно это и предопределило успех у коммерсантов.
Судьба творения
В течение всей свой жизни ученый создал около 50 машин, до наших дней «дожили» единицы. Сейчас достоверно можно отследить судьбу всего 6 устройств. Четыре модели находятся на постоянном хранении в Парижском музее искусств и ремесел, еще две в музее в Клермоне. Оставшиеся вычислительные устройства нашли свое пристанище в частных коллекциях. О том, кто сейчас ими владеет достоверно не известно. Под большим вопросом находится и исправность агрегатов.

Мнения
Некоторые биографы связывают разработку и создание суммирующей машины Паскаля с пошатнувшимся здоровьем самого изобретателя. Как было сказано выше, первые работы ученый начал еще в молодости. Они требовали от автора колоссального напряжения умственных и физических сил. Труд велся на протяжении практически 5 лет. В результате этого Блеза Паскаля начали преследовать сильные головные боли, которые затем сопровождали его всю оставшуюся жизнь.
Счетная машина Блеза Паскаля
Первым изобретателем, механических счетных машин, стал гениальный француз Блез Паскаль. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 г., когда Паскалю было всего 19 лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте 39 лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ. В его честь назван один из самых распространенных современных языков программирования.
Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство — ящик с многочисленными шестеренками. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. При работе на «паскалине» складываемые числа вводились путем соответствуюшего поворота наборных колесиков. Каждое колесико с нанесенными на него делениями от 0 до 9 соответствовало одному десятичному разряду числа — единицам, десяткам, сотням и т. д. Избыток над 9 колесико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колесико на 1 вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.

1642г. Суммирующая машина Паскаля производила арифметические действия приСуммирующая машина Паскаля вращении связаных колесиков с цифровыми делениями.
Хотя машина вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строил ось большинство вычислительных устройств на протяжении следующих трех столетий.
Основной недостаток «паскалины» состоял в неудобстве выполнения на ней всех операций, кроме простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит гениальному человеку, творческое воображение которого казалось неисчерпаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, известному своими учеными и политическими деятелями. Его отец, профессор этики, умер, когда ребенку было всего 6 лет, но к этому времени Лейбницем уже овладела жажда знаний. Дни напролет он проводил в отцовской библиотеке, читая книги и занимаясь историей, латинским и греческим языками и другими предметами.
Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции, пожалуй, не уступал многим профессорам. И все же теперь перед ним открылся совершенно новый мир. В университете он впервые познакомился с работами Кеплера, Галилея и других ученых, стремительно расширявших границы научного познания. Темпы научного прогресса поразили воображение молодого Лейбница, и он решил включить в свою учебную про грамму математику.
В возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете. Он отклонил это предложение, предпочтя жизни ученого дипломатическую карьеру. Однако, пока он разъезжал в карете из одной европейской столицы в другую, его беспокойный ум терзали всевозможные вопросы из самых различных областей науки и философии — от этики до гидравлики и астрономии. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христиан ом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, — писал Лейбниц, — подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины».
В 1673 г. он изготовил механический калькулятор. Сложение производил ось на нем по существу так же, как и на «паскалине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или — в последующих вариантах машины — цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел. Само повторение тоже было автоматическим.

1673 г. Калькулятор Лейбница ускорил выполнение операций умножения и деления.
Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями. Но Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разрабатывал в Англии Исаак Ньютон). Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.
Арифмометр Лейбница
Арифмометр (от греч. αριθμός — «число», «счёт» и греч. μέτρον — «мера», «измеритель») — настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.
Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).
Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры — вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).
Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.
Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний — счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее — см. ниже).
Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно — быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.
Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную — непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.
Идеи Чарльза Бэббиджа
Ра́зностная маши́на Чарльза Бэббиджа — механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.
Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.
Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.
Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.
Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу — вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась — разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.
В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).
Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.
Копия разностной машины в лондонском Музее науки
Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
© cyberpedia.su 2017-2020 — Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!Суммирующая машина Паскаля История
Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.
Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений.Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.
Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су иденье В ливре насчитывалось 20 су, в су — 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.
Тем не менее, примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.
Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда (нем.Wilhelm Schickard), созданных в 1623 году.
В 1799 году переход Франции на метрическую систему, коснулся также её денежной системы, которая стала, наконец, десятичной. Однако, практически до начала 19-го столетия создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Чарльз Ксавиер Томас де Колмар (англ.Charles Xavier Thomas de Colmar) запатентовал первый механический калькулятор, ставший коммерчески успешным.
Калькулятор Лейбница История создания
Идея создания машины, выполняющей вычисления, появилась у выдающегося немецкого математика и философа Готфрида Вильгельма Лейбница после его знакомства с голландским математиком и астрономом Христианом Гюйнианом. Огромное количество вычислений, которое приходилось делать астроному, навело Лейбница на мысль о создании механического устройства, которое могло бы облегчить такие расчёты («Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины»).
Механический калькулятор был создан Лейбницем в 1673 году. Сложение чисел выполнялось при помощи связанных друг с другом колёс, так же как на вычислительной машине другого выдающегося учёного-изобретателя Блеза Паскаля — «Паскалине». Добавленная в конструкцию движущаяся часть (прообраз подвижной каретки будущих настольных калькуляторов) и специальная рукоятка, позволявшая крутить ступенчатое колесо (в последующих вариантах машины — цилиндры), позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Необходимое число повторных сложений выполнялось автоматически.
Машина была продемонстрирована Лейбницем во Французской академии наук и Лондонском королевском обществе. Один экземпляр калькулятора попал к Петру Первому, который подарил её китайскому императору, желая удивить последнего европейскими техническими достижениями.
Были построены два прототипа, до сегодняшнего дня только один сохранился в Национальной библиотеке Нижней Саксонии (нем. Niedersächsische Landesbibliothek) в Ганновере, Германия. Несколько поздних копий находятся в музеях Германии, например, один в Немецком музее в Мюнхене.
Первый сумматор
Впервые описание «Паскалины» появилось в «Энциклопедии» Дидро, и с тех пор история о том, что юный Блез сделал эту машину для своего отца, бывшего сборщиком налогов, стала широко известна. Предназначение устройства отражено в конструкции: она достаточно неплохо складывает, хуже вычитает и с еще большими сложностями умножает. Основная модификация «Паскалины» была восьмиразрядной (ее младшие разряды приспособлены для оперирования с денье и су), но были и упрощенные шестиразрядные версии для работы только с десятичными цифрами. В базовом варианте первый разряд был двадцатеричным, а второй двенадцатеричным, потому что в те времена французская монетарная система была сложнее современной. Она отчасти повторяла английскую, в ливре было 12 денье, как и в фунте — шиллингов, а эти единицы соответственно делились на 20 су или пенсов.

Впервые описание «Паскалины» появилось в «Энциклопедии» Дидро, и с тех пор история о том, что юный Блез сделал эту машину для своего отца, стала широко известна При выполнении обычных десятичных операций можно было отключать разряды, предназначенные для разменной монеты. В Англии тех времен денежная система была куда сложнее: там ходили еще и фартинги, и флорины. А гинеи (в которых было 13 шиллингов) просуществовали до 70-х годов прошлого века, поскольку стоимость товаров для джентльменов было принято указывать в уже не существовавших на тот период денежных единицах.
В отличие от появившихся позже и ставших весьма популярными арифмометров в «Паскалине» использовались шестерни с фиксированными зубцами. Эта конструкция шестерней объединяет замысел Паскаля с проектом Леонардо да Винчи, известным только в виде рисунка. На лицевой панели находятся компоненты, обеспечивающие ввод и вывод, восьмиразрядный «дисплей» и диски с барабанами и фиксаторами, своего рода прообраз цифровой клавиатуры.
Внутри имеется арифметическое устройство в виде регистра, состоящего из шестерен с храповиками, обеспечивающими вращение только в одном направлении и, что самое важное, есть механизм переноса на случай, когда сумма в разряде больше девяти.
Работа с механическим суммирующим регистром напоминает то, что делается в электронных регистрах, построенных на триггерах. Для сложения нужно:
- сбросить предыдущий результат путем вращения барабанов до тех пор, пока в каждом из окошек не появятся нули;
- ввести последовательно, начиная с младшего разряда, первое слагаемое, специальным стержнем при этом фиксируется положение, соответствующее цифре, а барабан вращается до этого упора;
- таким же образом вводится второе слагаемое, и на дисплее можно видеть полученный результат.
Вычитание было заметно сложнее, но, что любопытно, его реализация тоже очень напоминает использование дополнительных кодов, то есть вычитание заменяется суммированием с дополнением до ближайшего наибольшего целого, состоящего из одной единицы и нулей, и циклическим переносом единицы. Можно выполнить при желании и умножение, и деление, но овчинка явно не стоит выделки.
Несмотря на видимую изящность, у «Паскалины» были заметные недостатки. Прежде всего, технология «приборостроения» была низка, предмет «Теория машин и механизмов» и культура измерений отсутствовали, поэтому низка была надежность — в работе сумматора часто происходил сбои. «Паскалину» реально можно рассматривать только в качестве сумматора, остальные операции были слишком тяжелы.
Паскалина была неодинока. В XVII веке такого рода устройствами, кроме создателя логарифмов Джона Непера и Паскаля, занимались еще два ученых: немецкий Вильгельм Шиккард и английский Сэмюэль Морленд. Письма, в которых Шиккард описывает Иоганну Кеплеру свое изобретение, датированы 1620-1630 годами, то есть немного раньше создания машины Паскаля. Но была ли она построена — неизвестно, хотя есть современные реконструкции, подтверждающие ее работоспособность.
История науки и техники Com New
Француз Блез Паскаль был сыном сборщика налогов. Наблюдая за бесконечными утомительными расчетами отца, он задумал создать вычислительное устройство. В возрасте 19 лет Блез начал работу над постройкой суммирующей машины. Через двадцать лет Паскаля не стало, но человечество запомнило его как выдающегося математика, философа, писателя и физика. Недаром именем Паскаля назван один из наиболее распространенных языков программирования.

Суммирующая машина Паскаля (механизм)
Суммирующее устройство Паскаля представляло собой ящик со множеством шестеренок. Только за одно десятилетие ученому удалось построить более пятидесяти разных вариантов машины. Во время работы на «паскалине» суммируемые числа вводились путем определенного поворота наборных колес. На каждое были нанесены деления от нуля до девяти, что соответствовало 1-му десятичному разряду числа. Превышение над девяткой колесо «переносило», при этом совершая полный круг и двигая левое «старшее» колесо на единицу вперед.
Несмотря на всеобщее признание, устройство не сделало ученого богатым. Однако сам принцип связанных колес лег в основу большинства вычислительных машин в течение следующих трех веков. За свое изобретение Паскаль получил королевский Патент, согласно которому за ним сохранялись авторские права на производство и продажу машин. Однако одаренный изобретатель на этом не остановился.
В 1648 году Паскаль довел до конца «опыты, касающиеся пустоты». Он доказал отсутствие в природе «страха пустоты». Ученый анализировал равновесие жидкостей под воздействием атмосферного давления. Результаты открытий легли в основу изобретения гидравлического пресса, который значительно опередил технологии того времени.

Суммирующая машина Паскаля (внешний вид)
Но в один прекрасный момент научная стезя опротивела известному ученому. Храм науки оказался тесен, и Паскалю захотелось порадоваться «прелестям» жизни. Свет принял его тут же, и на несколько лет изобретатель погрузился в атмосферу аристократических салонов. Все эти годы младшая сестра Паскаля, монахиня из Пор Рояль, неустанно молилась за спасение заблудшей души своего брата.
В один из ноябрьских вечеров 1654 года Паскаля посетило мистическое озарение. Когда он пришел в себя, то немедленно записал откровение на кусочке пергамента и зашил его в подкладку платья. Эта реликвия была с ученым до самого последнего дня.
В день смерти Паскаля его друзья и обнаружили пергамент. Событие стало поворотным пунктом в жизни изобретателя, оставившего научную практику и опыты. Отныне его писательский талант был направлен на защиту христианства. Ученый публикует несколько художественных эссе под названием «Письма к провинциалу».

Суммирующая машина Паскаля (принципиальная схема)
Последний год своей жизни Паскаль посвятил паломничеству по церквям Парижа. Его преследовали жуткие головные боли, и врачи запретили умственные нагрузки. Однако больной умудрялся записывать мысли, которые приходили ему в голову, на любом подвернувшемся материале. 19 августа 1662 года мучительная продолжительная болезнь взяла верх, и Блез Паскаль скончался.
После его смерти друзья обнаружили множество пачек с записками, которые были перевязаны бечевкой. Позже их расшифровали, а затем издали отдельной книгой. Современному читателю она известна под названием «Мысли».
В честь Паскаля назвали язык программирования. Его отцом считается Никлаус Вирт. Работа над языком Паскаль велась на протяжении 1968-1969 года. Годом рождения языка Паскаль считается 1970. Компьютерная общественность нашла в нем эффективный инструмент для структурного программирования и обучения правильному программированию.






