Что такое суточная параллель

Мореходная астрономия

Небесная сфера — это условная сфера со случайным радиусом, на поверхность которой могут быть спроектированы космические объекты. Центр сферы небес – условный человеческий взгляд, что производит наблюдение. Положение самого наблюдателя может быть произвольным. Для наблюдателя обращение небесной сферы демонстрирует суточный ход звезд по небу

Основными элементами небесной сферы являются:

  • Отвесная линия. Это линия пересечения центральной точки сферы, совпадающая со шнуром отвеса наблюдателя. Она образует точки зенита и надира;
  • Астрономический горизонт. Это круг небесной сферы, имеющий наибольший размер, который направлен строго перпендикулярно вертикали. Создает видимую полусферу с вершиной в зените и невидимую, с вершиной в надире.
  • Вертикал. Представляет собой полукруг, проходящий через светило, а у сферы – через зенит и надир. Малый полукруг, плоскость которого параллельна горизонту, называется альмукантаратом.
  • Ось мира представляет собой виртуальную прямую, пересекающую мировой центр. Она создает северный и южный полюса.
  • Небесный экватор – большой круг, с расположенной перпендикулярно мировой оси плоскостью. Небесный экватор образует северное и южное полушария.
  • Круг склонения светила – большой круг, касающийся звезды и полюсов.
  • Суточная параллель – малый круг, параллельный небесному экватору.
  • Точки востока и запада – точки пересечения астрономического горизонта и небесного экватора.
  • Проходящий через расположенную на востоке точку высотный полукруг называется первым вертикалом.
  • Небесный меридиан – большой круг с плоскостью, касающейся мировой оси и линии отвеса. Делит сферу на западное и восточное полушария.
  • Полуденной линией называют прямую, образованную пересечением плоскостей астрономического горизонта и небесного меридиана. В местах пересечения полуденной линии и небесного меридиана с точкой горизонта образуются точки севера и юга.
  • Эклиптика – большой круг сфероида, на котором наблюдается годовой ход Солнца.
  • Точки весеннего и осеннего равноденствия – точки пересечения эклиптики и небесного экватора.
  • Линия равноденствия – прямая линия, что объединяет точки равноденствия.
  • Точки летнего и зимнего солнцестояния располагаются на линии, перпендикулярной линии равноденствия.
  • Ось эклиптики – диаметр небесной сферы, что расположен перпендикулярно небесной плоскости.

Рисунок 1. Небесная сфера

Сферические системы координат

Горизонтальная система координат

В этой системе основными кругами являются астрономический горизонт и вертикал, а линия отвеса является главным направлением.

Рисунок 2. Горизонтальная система координат.

Проходящая через звезду часть вертикала называется вертикалом светила. В том случае, если в точках E и W вертикал пересекает астрономический горизонт, тогда он является первым вертикалом. Высотой звезды h является дуга вертикала от горизонтальной плоскости до места расположения объекта.

Альмукантаратом звезды является альмукантарат, пересекающий тело звезды А.
Азимутом звезды называется сферический угол точки меридиана, расположенный между наблюдательным меридианом и вертикалом.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

В мореходной астрономии применяются три способа исчисления азимута:

  • Круговой, с диапазоном от 0 до 360º;
  • Полукруговой, с диапазоном от 0 до 180º;
  • Четвертной, с диапазоном от 0 до 90º.

Экваториальная система координат №1

В данной системе главным направлением является мировая ось, а главными кругами – наблюдательный меридиан и небесный экватор. В качестве вспомогательного круга используется звездная параллель.

Рисунок 3. Экваториальная система координат №1

Дуга звездного меридиана называется склонением звезды δ. В зависимости от того, в каком полушарии находится звезда, склонение бывает северным или южным. Полярным расстоянием называется дуга звездного меридиана между полюсом и звездой в промежутке от 0 до 180º. Сферический угол, который образован мировым полюсом и наблюдательным меридианом в полуденной части, называется часовым углом звезды t.

Экваториальная система координат №2

В данной системе координат положение звезды задается посредством прямого восхождения (дуги небесного экватора от точки весеннего равноденствия до звёздного меридиана, измеряемой в направлении солнечного годового хода) и склонения.

Рисунок 4. Экваториальная система координат №2.

Эклиптическая система координат

У эклиптической системы основным направлением является ось эклиптики, а главным кругом – эклиптическая земная плоскость и плоскость широтного круга точки весеннего равноденствия. Место звезды устанавливается по астрономической долготе и широте, причем местоположение созерцателя и вращение небесной сферы не оказывают влияния на координаты звезд в данной системе.

Рисунок 5. Эклиптическая координатная система.

Не нашли что искали?

Просто напиши и мы поможем

Астрономические инструменты в мореходной астрономии

Средства контроля времени

Для решения астрономических вопросов суда оснащаются средствами для измерения времени, имеющие точность в пределах 0.5…1.0 секунды (эталонное время). Такие приборы применяются для обслуживания навигации, а для эксплуатации достаточно приборов с точностью 10…60 секунд (судовое время). Одним из самых распространенных приборов является кварцевый или механический хронометр (для эталонного времени), а также секундомеры и палубные часы (для воспроизведения времени). Воспроизведение судового времени производится посредством механических и электрических судовых часов.

Звездный глобус

Звездным глобусом называется прибор, выполненный в форме макета небесной сферы. Он необходимо для решения астрономических задач в мореплавании. Звездный глобус используют для получения ответов на следующие вопросы:

  • Опознание небесного тела;
  • Определение альмукантарата и высоты небесного тела;
  • Нахождения времени появления небесного объекта в определенном месте.

Основным недостатком звездного глобуса является его громоздкие размеры и трудность в использовании. Поэтому зачастую вместо него применяются опознаватели звезд и карты звездного неба.

Секстант

Навигационным секстантом называется угломерный прибор, который устроен на основе схемы отражения. Он служит для фиксации величин углов между точкой наблюдения и небесным телом. Посредством секстанта определяется местоположение судна. Благодаря оптической системе с двумя зеркалами-призмами, секстант позволяет наблюдать сразу два объекта и определять угол между ними.

Не нашли нужную информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.

Гарантия низких цен

Все работы выполняются без посредников, поэтому цены вас приятно удивят.

Доработки и консультации включены в стоимость

В рамках задания они бесплатны и выполняются в оговоренные сроки.

Вернем деньги за невыполненное задание

Если эксперт не справился – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.

Тысячи проверенных экспертов

Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».

computer

Гарантия возврата денег

Эксперт получил деньги, а работу не выполнил?
Только не у нас!

Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата денег

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Небесная сфера

Небе́сная сфе́ра — воображаемая сфера произвольного радиуса, на которую проецируются небесные тела: служит для решения различных астрометрических задач. За центр небесной сферы принимают глаз наблюдателя; при этом наблюдатель может находиться как на поверхности Земли, так и в других точках пространства (например, он может быть отнесён к центру Земли). Для наземного наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.

Каждому небесному светилу соответствует точка небесной сферы, в которой её пересекает прямая, соединяющая центр сферы с центром светила. При изучении положений и видимых движений светил на небесной сфере выбирают ту или иную систему сферических координат. Расчёты положений светил на небесной сфере производятся с помощью небесной механики и сферической тригонометрии.

Содержание

История

Представление о небесной сфере возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Таким образом, в их представлении небесная сфера была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.

Элементы небесной сферы

Отвесная линия и связанные с ней понятия

Отвесная линия — прямая, проходящая через центр небесной сферы и точку наблюдения на поверхности Земли. Отвесная линия пересекается с поверхностью небесной сферы в двух точках — зените над головой наблюдателя и надире под ногами наблюдателя.

Истинный горизонт — большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии. Истинный горизонт делит поверхность небесной сферы на две полусферы: видимую полусферу с вершиной в зените и невидимую полусферу с вершиной в надире. Истинный горизонт не совпадает с видимым горизонтом вследствие приподнятости точки наблюдения над земной поверхностью, а также по причине искривления лучей света в атмосфере.

Круг высоты или вертикал светила — большой полукруг небесной сферы, проходящий через светило, зенит и надир. Альмукантара́т (араб. «круг равных высот») — малый круг небесной сферы, плоскость которого параллельна плоскости математического горизонта. Круги высоты и альмукантараты образуют координатную сетку, задающую горизонтальные координаты светила.

Суточное вращение небесной сферы и связанные с ним понятия

Ось мира — воображаемая линия, проходящая через центр мира, вокруг которой происходит вращение небесной сферы. Ось мира пересекается с поверхностью небесной сферы в двух точках — северном полюсе мира и южном полюсе мира. Вращение небесной сферы происходит против часовой стрелки вокруг северного полюса, если смотреть на небесную сферу изнутри.

Небесный экватор — большой круг небесной сферы, плоскость которого перпендикулярна оси мира и проходит через центр небесной сферы. Небесный экватор делит небесную сферу на два полушария: северное и южное.

Круг склонения — большой круг небесной сферы, проходящий через полюсы мира.

Суточная параллель — малый круг небесной сферы, плоскость которого параллельна плоскости небесного экватора. Видимые суточные движения светил совершаются по суточным параллелям. Круги склонения и суточные параллели образуют на небесной сфере координатную сетку, задающую экваториальные координаты светила.

Термины, рождаемые в пересечениях понятий «Отвесная линия» и «Вращение небесной сферы»

Небесный экватор пересекается с математическим горизонтом в точке востока и точке запада. Точкой востока называется та, в которой точки вращающейся небесной сферы восходят из-за горизонта. Полукруг высоты, проходящий через точку востока, называется первым вертикалом.

Небесный меридиан — большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира. Небесный меридиан делит поверхность небесной сферы на два полушария: восточное полушарие и западное полушарие.

Полуденная линия — линия пересечения плоскости небесного меридиана и плоскости математического горизонта. Полуденная линия и небесный меридиан пересекают математический горизонт в двух точках: точке севера и точке юга. Точкой севера называется та, которая ближе к северному полюсу мира.

Годовое движение Солнца по небесной сфере и связанные с ним понятия

P,P’ — полюсы мира, T,T’ — точки равноденствия, E,C — точки солнцестояния, П,П’ — полюса эклиптики, PP’ — ось мира, ПП’ — ось эклиптики, ATQT’- небесный экватор, ETCT’ — эклиптика

Эклиптика — большой круг небесной сферы, по которому происходит видимое годовое движение Солнца. Плоскость эклиптики пересекается с плоскостью небесного экватора под углом ε = 23°26′.

Две точки, в которых эклиптика пересекается с небесным экватором, называются точками равноденствия. В точке весеннего равноденствия Солнце в своём годовом движении переходит из южного полушария небесной сферы в северное; в точке осеннего равноденствия — из северного полушария в южное. Две точки эклиптики, отстоящие от точек равноденствия на 90° и тем самым максимально удалённые от небесного экватора, называются точками солнцестояния. Точка летнего солнцестояния находится в северном полушарии, точка зимнего солнцестояния — в южном полушарии. Эти четыре точки обозначаются символами зодиака, соответствующими созвездиям, в которых они находились во времена Гиппарха [1] (в результате предварения равноденствий эти точки сместились и ныне находятся в других созвездиях): весеннего равноденствия — знаком Овна (♈), осеннего равноденствия — знаком Весов (♎), зимнего солнцестояния — знаком Козерога (♑), летнего солнцестояния — знаком Рака (♋) [2] .

Ось эклиптики — диаметр небесной сферы, перпендикулярный плоскости эклиптики. Ось эклиптики пересекается с поверхностью небесной сферы в двух точках — северном полюсе эклиптики, лежащем в северном полушарии, и южном полюсе эклиптики, лежащем в южном полушарии. Северный полюс эклиптики имеет экваториальные координаты R.A. = 18h00m, Dec = +66°33′, и находится в созвездии Дракона.

Круг эклиптической широты, или просто круг широты — большой полукруг небесной сферы, проходящий через полюсы эклиптики.

Любопытные факты

Слово «зенит» пришло к нам из арабского языка, где оно произносится как «замт». Переписанное латинскими буквами как zamt , оно было впоследствии искажено переписчиками, превратившись в zanit , а затем и в «зенит».

ВИДИМОЕ СУТОЧНОЕ ДВИЖЕНИЕ СВЕТИЛ

Из-за вращения Земли все светила и воображаемые точки на небесной сфере делают в течение суток один полный оборот вокруг оси мира. Каждое светило перемещается по своей суточной параллели, удалённой от небесного экватора на величину склонения. Вращение происходит с востока на запад или, если смотреть на небесную сферу снаружи со стороны северного полюса мира, по часовой стрелке.

На рис. 1.6 показана суточная параллель произвольно выбранного светила (σ).Рассмотрим прохождение этим светилом через основные круги в течение суток. В точке а светило переходит из подгоризонтной части сферы в надгоризонтную. Пересечение светилом истинного горизонта называется истинным восходом или заходом. Таким образом, в точке (а)светиловосходит, а в точке (е) заходит. В точке (в)светило пересекает восточную часть первого вертикала, а в точке (d) западную.

В точке (с) светило пересекает полуденную часть меридиана наблюдателя. Пересечение светилом меридиана наблюдателя называется кульминацией светила. В течение суток наблюдается две кульминации: верхняя в точке с и нижняя в точке (f), когда светило пересекает полуночную часть меридиана наблюдателя.

Проследим четверти горизонта, по которым проходит светило в течение суток. Светило взошло на северо-востоке, затем пересекает восточную часть первого вертикала и попадает в юго-восточную часть небесной сферы, затем кульминирует и попадает в юго-западную часть, потом пересекает западную часть первого вертикала и попадает в последнюю, северо-западную часть сферы, где и заходит. После нижней кульминации светило попадает опять в северо-восточную часть сферы и всё повторяется.

Таким образом, у светила на рис. 1.6 происходит такая смена наименований четвертей азимута: NE, SE, SW, NW.

Но не у всех светил происходит такая смена наименований азимута. У рассмотренного светила

склонение было одноимённо с широтой. Если бы склонение было южным, светило восходило бы на юго-востоке и после кульминации заходило бы на юго-западе. Мало того, светила могут быть так расположены на небесной сфере, что их суточные параллели вообще не будут пересекать истинный горизонт, т.е. могут быть невосходящие и незаходящие светила.

Рассмотрим рис. 1.7. На нем небесная сфера спроектирована на плоскость меридиана наблюдателя. Небесный экватор показан прямой QQ, первый вертикал совпадает с отвесной линией, а точки востока и запада совпадают с центром сферы и на чертеже не обозначены. Суточные парал­лели показаны прямыми, параллельными линии небесного экватора QQ’.

Светила 1 и 2 незаходящие, светило 5 невосходящее. Светила 3 и 4 восходят и заходят, но у светила 3 склонение одноимённо с широтой и оно большую часть суток находится над горизонтом, а у светила 4 склонение разноимённо с широтой и оно большую часть суток находится под горизонтом.

На рис. 1.7 видно, что, если бы склонение светила 3 равнялось бы дуге NQ’, равной 90°- φ , то его суточная параллель касалась бы истинного горизонта в точке N. Таким образом, условием для того, чтобы светило восходило и заходило, является требование 8 90°- φ . Отсюда следует, что для незаходящих светил 8 > 90°- φ, причём φи 8 одноимённы.

Для невосходящих светил 8 > 90°- φ, причём φ и 8 разноимённы.

Далее, анализируя рис. 1.7, можно сделать вывод, что, если:

8 = φи одноимённы, светило проходит через зенит;

8 = φи разноимённы, светило проходит через надир;

8 > φсветило не пересекает первый вертикал.

Если светило не пересекает первый вертикал, то оно находится всего в двух четвертях горизонта, как, например, светило 1. После кульминации такое светило достигает максимального азимута и затем снова подходит к меридиану наблюдателя, к другой кульминации. Положение светила, когда оно максимально удалено по азимуту от меридиана наблюдателя, называется элонгацией. В течение суток светило проходит две элонгации -восточную и западную.

Во время верхней кульминации светила 3 ( рис. 1.7 ) его высота равна дуге Sk.Высота светила в меридиане наблюдателя называется меридиональной высотой и обозначается «Н». На рис. 1.7 видно, что дуга Sk складывается из дуги SQ, которая равна 90°- φи дуги Qk, которая равна склонению светила.

Таким образом, Н = 90° ~ φ + 8, откуда получим, учитывая, что 90°-H= z,:

По формуле ( 1.3 ) определяется широта по меридиональной высоте Солнца,что будет подробно описано в разделе 3.6.

Рассмотрим теперь характер изменения координат светила из-за суточного вращения небесной сферы.

На рис. 1.6 видно, что склонение в течение суток остается постоянным. Поскольку точка Овна участвует в суточном вращении небесной сферы, то и прямое восхождение остается постоянным.

Часовой угол светила изменяется из-за перемещения меридиана светила, вызванного вращением небесной сферы. Поэтому часовой угол светила изменяется строго пропорционально времени.

Чтобы выяснить характер изменения высоты и азимута, надо продифференцировать формулы

(1.1) и( 1.2) по t.После выполнения всех необходимых преобразований, получим:

Δh = -cos φsinA Δt (1.4)

ΔA=- (sin φ -cos φ tgh cosA) Δt(1.5)

Эти формулы дают возможность, задавая экстремальные значения аргументам тригонометрических функций (0° или 90°), находить изменения высоты и азимута.

Анализ формулы (1.4 ) показывает, что минимально (Δ h = 0 ) изменение высоты происходит намеридиане наблюдателя, во время кульминации и для наблюдателя на полюсе.

На рис. 1.8 видно, что в этом случае суточные параллели располагаются параллельно горизонту и высоты равны склонениям светил.

На рис. 1.8 показано расположение суточных параллелей светил для наблюдателя на полюсе, а на рис. 1.9- для наблюдателя на экваторе.

Максимальное изменение высоты имеют светила на первом вертикале, особенно в малых широтах. как это видно на рис.1.9

Аналогичный анализ формулы (1.5) показывает, что максимально азимут изменяется вблизи меридиана наблюдателя и минимально — около первого вертикала.

Для наблюдателя на полюсе Δ A =Δ t,т.е. азимут изменяется равномерно, пропорционально времени Для наблюдателя в малых широтах, особенно при больших высотах светил, азимут изменяется крайне неравномерно, когда за несколько минут он может измениться на несколько десятков градусов. Этим обстоятельством пользуются при определении места судна по Солнцу в тропиках.

На рис. 1.9 видно, что у светила 2 азимут после восхода долгое время остается около 90°. Потом около кульминации он резко меняется и до захода остается около 270°.

Анализ рис. 1.8 показывает, что на полюсе половина звезд незаходящие, половина — невосходящие. Альмукантарата совпадают с параллелями и h=8

Для наблюдателя на экваторе ( рис. 1.9 ) все звезды восходящие и заходящие. Ни одно светило не пересекает первый вертикал, т.е. каждое светило бывает только в двух четвертях горизонта. Суточные параллели расположены перпендикулярно к горизонту и светила, в том числе и Солнце, его быстро проходят. Это означает, что сумерки в тропиках очень непродолжительны и определение места судна по звездам ( а оно возможно только в сумерки, когда видны и звезды, и горизонт ), должно быть хорошо организовано и проведено быстро.

Небесная сфера ее основные элементы: точки, линии, плоскости

Небесная сфера – абстрактное понятие, воображаемая сфера бесконечно большого радиуса, центром которой является наблюдатель. При этом центр небесной сферы как бы находится на уровне глаз наблюдателя (иными словами, все что вы вы видите над головой от горизонта до горизонта – и есть эта самая сфера). Впрочем, для простоты восприятия, можно считать центром небесной сферы и центр Земли, никакой ошибки в этом нет. Положения звезд, планет, Солнца и Луны на сферу наносят в таком положении, в каком они видны на небе в определенный момент времени из данной точки нахождения наблюдателя.

Иными словами, хотя наблюдая положение светил на небесной сфере, мы, находясь в разных местах планеты, постоянно будем видеть несколько различную картину, зная принципы “работы” небесной сферы, взглянув на ночное небо мы без труда сможем сориентироваться на местности пользуясь простой техникой. Зная вид над головой в точке А, мы сравним его в с видом неба в точке Б, и по отклонениям знакомых ориентиров, сможем понять где именно находимся сейчас.

Люди давно уже придумали целый ряд инструментов облегчающих нашу задачу. Если ориентироваться по “земному” глобусу просто с помощью широты и долготы, то целый ряд подобных элементов – точек и линий, предусмотрен и для “небесного” глобуса – небесной сферы.

Небесная сфера и положение наблюдателя

Небесная сфера и положение наблюдателя. Если наблюдатель сдвинется, то сдвинется и вся видимая им сфера

Элементы небесной сферы

Небесная сфера имеет ряд характерных точек, линий и кругов, рассмотрим основные элементы небесной сферы.

Вертикаль наблюдателя небесной сферы

Вертикаль наблюдателя — прямая, проходящая через центр небесной сферы и совпадающая с направлением нити отвеса в точке наблюдателя. Зенит — точка пересечения вертикали наблюдателя с небесной сферой, расположенная над головой наблюдателя. Надир — точка пересечения вертикали наблюдателя с небесной сферой, противоположная зениту.

Истинный горизонт и стороны света

Истинный горизонт и стороны света

Истинный горизонт — большой круг на небесной сфере, плоскость которого перпендикулярна к вертикали наблюдателя. Истинный горизонт делит небесную сферу на две части: надгоризонтную полусферу, в которой расположен зенит, и подгоризонтную полусферу, в которой расположен надир.

Ось мира или земная ось

Ось мира или земная ось

Ось мира (Земная ось) — прямая, вокруг которой происходит видимое суточное вращение небесной сферы. Ось мира параллельна оси вращения Земли, а для наблюдателя, находящегося на одном из полюсов Земли, она совпадает с осью вращения Земли. Видимое суточное вращение небесной сферы является отражением действительного суточного вращения Земли вокруг своей оси. Полюсы мира —точки пересечения оси мира с небесной сферой. Полюс мира, находящийся в области созвездия Малой Медведицы, называется Северным полюсом мира, а противоположный полюс называется Южным полюсом.

Небесный экватор

Небесный экватор — большой круг на небесной сфере, плоскость которого перпендикулярна к оси мира. Плоскость небесного экватора делит небесную сферу на северную полусферу, в которой расположен Северный полюс мира, и южную полусферу, в которой расположен Южный полюс мира.

Небесный меридиан

Небесный меридиан, или меридиан наблюдателя — большой круг на небесной сфере, проходящий через полюсы мира, зенит и надир. Он совпадает с плоскостью земного меридиана наблюдателя и делит небесную сферу на восточную и западную полусферы.

Точки севера и юга на небесной сфере

Точки севера и юга на небесной сфере

Точки севера и юга — точки пересечения небесного меридиана с истинным горизонтом. Точка, ближайшая к Северному полюсу мира, называется точкой севера истинного горизонта С, а точка, ближайшая к Южному полюсу мира, — точкой юга Ю. Точки востока и запада — точки пересечения небесного экватора с истинным горизонтом.

Полуденная линия — прямая линия в плоскости истинного горизонта, соединяющая точки севера и юга. Полуденной называется эта линия потому, что в полдень по местному истинному солнечному времени тень от вертикального шеста совпадает с этой линией, т. е. с истинным меридианом данной точки.

Южная и северная точки небесного экватора

Южная и северная точки небесного экватора

Южная и северная точки небесного экватора — точки пересечения небесного меридиана с небесным экватором. Точка, ближайшая к южной точке горизонта, называется точкой юга небесного экватора, а точка, ближайшая к северной точке горизонта, — точкой севера небесного экватора.

Вертикал светила на небесной сфере

Вертикал светила, или круг высоты, — большой круг на небесной сфере, проходящий через зенит, надир и светило. Первый вертикал — вертикал, проходящий через точки востока и запада.

часовой круг светила

часовой круг светила

Круг склонения, или часовой круг светила, — большой круг на небесной сфере, проходящий через полюсы мира и светило.

Суточная параллель светила

Суточная параллель светила

Суточная параллель светила — малый круг на небесной сфере, проведенный через светило параллельно плоскости небесного экватора. Видимое суточное движение светил происходит по суточным параллелям.

Альмукантарат светила на небесной сфере

Альмукантарат светила — малый круг на небесной сфере, проведенный через светило параллельно плоскости истинного горизонта.

Все отмеченные выше элементы небесной сферы активно используются для решения практических задач ориентирования в пространстве и определения положения светил. В зависимости от целей и условий измерения применяют две отличающиеся системы сферических небесных координат.

В одной системе светило ориентируют относительно истинного горизонта и называют эту систему горизонтальной системой координат, а в другой — относительно небесного экватора и называют экваториальной системой координат.

В каждой из этих систем положение светила на небесной сфере определяется двумя угловыми величинами подобно тому, как при помощи широты и долготы определяется положение точек на поверхности Земли.

4. небесная сфера. Астрономические системы координат

Тема 4. НЕБЕСНАЯ СФЕРА. АСТРОНОМИЧЕСКИЕ СИСТЕМЫ КООРДИНАТ

4.1. НЕБЕСНАЯ СФЕРА

Небесная сфера – воображаемая сфера произвольного радиуса, на которую проецируются небесные светила. Служит для решения различных астрометрических задач. За центр небесной сферы, как правило, принимают глаз наблюдателя. Для находящегося на поверхности Земли наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.

Представление о Небесной сфере возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Таким образом, в их представлении небесная сфера была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.

Радиус небесной сферы может быть принят каким угодно: в целях упрощения геометрических соотношений его полагают равным единице. В зависимости от решаемой задачи центр небесной сферы может быть помещен в место:

где находится наблюдатель (топоцентрическая небесная сфера),

в центр Земли (геоцентрическая небесная сфера),

в центр той или иной планеты (планетоцентрическая небесная сфера),

в центр Солнца (гелиоцентрическая небесная сфера) или в любую др. точку пространства.

Каждому светилу на небесной сфере соответствует точка, в которой её пересекает прямая, соединяющая центр небесной сферы со светилом (с его центром). При изучении взаимного расположения и видимых движений светил на небесной сфере выбирают ту или иную систему координат), определяемую основными точками и линиями. Последние обычно являются большими кругами небесной сферы. Каждый большой круг сферы имеет два полюса, определяющиеся на ней концами диаметра, перпендикулярного к плоскости данного круга.

Названия важнейших точек и дуг на небесной сфере

Отвесная линия (или вертикальная линия) – прямая, проходящая через центры Земли и небесной сферы. Отвесная линия пересекается с поверхностью небесной сферы в двух точках – зените , над головой наблюдателя, и надире – диаметрально противоположной точке.

Математический горизонт – большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии. Плоскость математического горизонта проходит через центр небесной сферы и делит ее поверхность на две половины: видимую для наблюдателя, с вершиной в зените, и невидимую , с вершиной в надире. Математический горизонт может не совпадать с видимым горизонтом вследствие неровности поверхности Земли и различной высотой точек наблюдения, а также искривлением лучей света в атмосфере.

Рис. 4.1. Небесная сфера

Ось мира – ось видимого вращения небесной сферы, параллельная оси Земли.

Ось мира пересекается с поверхностью небесной сферы в двух точках – северном полюсе мира и южном полюсе мира .

Полюс мира – точка на небесной сфере, вокруг которой происходит видимое суточное движение звезд из-за вращения Земли вокруг своей оси. Северный полюс мира находится в созвездии Малой Медведицы , южный в созвездии Октант . В результате прецессии полюса мира смещаются примерно на 20″ в год.

Высота полюса мира равна широте места наблюдателя. Полюс мира, расположенный в надгоризонтной части сферы, называется повышенным, другой же полюс мира, находящийся в подгоризонтной части сферы, называется пониженным.

Небесный экватор – большой круг небесной сферы, плоскость которого перпендикулярна оси мира. Небесный экватор делит поверхность небесной сферы на два полушария: северное полушарие , с вершиной в северном полюсе мира, и южное полушарие , с вершиной в южном полюсе мира.

Небесный экватор пересекается с математическим горизонтом в двух точках: точке востока и точке запада . Точкой востока называется та, в которой точки вращающейся небесной сферы пересекают математический горизонт, переходя из невидимой полусферы в видимую.

Небесный меридиан – большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира. Небесный меридиан делит поверхность небесной сферы на два полушария – восточное полушарие , с вершиной в точке востока, и западное полушарие , с вершиной в точке запада.

Полуденная линия – линия пересечения плоскости небесного меридиана и плоскости математического горизонта.

Небесный меридиан пересекается с математическим горизонтом в двух точках: точке севера и точке юга . Точкой севера называется та, которая ближе к северному полюсу мира.

Эклиптика – траектория видимого годичного движения Солнца по небесной сфере. Плоскость эклиптики пересекается с плоскостью небесного экватора под углом ε = 23°26′.

Эклиптика пересекается с небесным экватором в двух точках – весеннего и осеннего равноденствия . В точке весеннего равноденствия Солнце переходит из южного полушария небесной сферы в северное, в точке осеннего равноденствия — из северного полушария небесной сферы в южное.

Точки эклиптики, отстоящие от точек равноденствия на 90°, называются точкой летнего солнцестояния (в северном полушарии) и точкой зимнего солнцестояния (в южном полушарии).

Ось эклиптики – диаметр небесной сферы, перпендикулярный плоскости эклиптики.

4.2. Основные линии и плоскости небесной сферы

Ось эклиптики пересекается с поверхностью небесной сферы в двух точках – северном полюсе эклиптики , лежащем в северном полушарии, и южном полюсе эклиптики, лежащем в южном полушарии.

Альмукантарат (араб. круг равных высот) светила – малый круг небесной сферы, проходящий через светило, плоскость которого параллельна плоскости математического горизонта.

Круг высоты или вертикальный круг или вертикал светила – большой полукруг небесной сферы, проходящий через зенит, светило и надир.

Суточная параллель светила – малый круг небесной сферы, проходящий через светило, плоскость которого параллельна плоскости небесного экватора. Видимые суточные движения светил совершаются по суточным параллелям.

Круг склонения светила – большой полукруг небесной сферы, проходящий через полюсы мира и светило.

Круг эклиптической широты́ , или просто круг широты светила – большой полукруг небесной сферы, проходящий через полюсы эклиптики и светило.

Круг галактической широты́ светила – большой полукруг небесной сферы, проходящий через галактические полюсы и светило.

2. АСТРОНОМИЧЕСКИЕ СИСТЕМЫ КООРДИНАТ

Система небесных координат используется в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, система небесных координат является сферической системой координат, в которой третья координата – расстояние – часто неизвестна и не играет роли.

Системы небесных координат отличаются друг от друга выбором основной плоскости. В зависимости от стоящей задачи, может быть более удобным использовать ту или иную систему. Наиболее часто используются горизонтальная и экваториальная системы координат. Реже – эклиптическая, галактическая и другие.

Горизонтальная система координат

Горизонтальная система координат (горизонтная) – это система небесных координат, в которой основной плоскостью является плоскость математического горизонта, а полюсами – зенит и надир. Она применяется при наблюдениях звёзд и движения небесных тел Солнечной системы на местности невооружённым глазом, в бинокль или телескоп. Горизонтальные координаты планет, Солнца и звёзд непрерывно изменяются в течение суток ввиду суточного вращения небесной сферы.

Линии и плоскости

Горизонтальная система координат всегда топоцентрическая. Наблюдатель всегда находится в фиксированной точке на поверхности земли (отмечена буквой O на рисунке). Будем предполагать, что наблюдатель находится в Северном полушарии Земли на широте φ. При помощи отвеса определяется направление на зенит (Z), как верхняя точка, в которую направлен отвес, а надир (Z’) – как нижняя (под Землёй). Поэтому и линия (ZZ’), соединяющая зенит и надир называется отвесной линией.

4.3. Горизонтальная система координат

Плоскость, перпендикулярная к отвесной линии в точке O называется плоскостью математического горизонта. На этой плоскости определяется направление на юг (географический) и север, например, по направлению кратчайшей за день тени от гномона. Кратчайшей она будет в истинный полдень, и линия (NS), соединяющая юг с севером, называется полуденной линией. Точки востока (E) и запада (W) берутся отстоящими на 90 градусов от точки юга соответственно против и по ходу часовой стрелки, если смотреть из зенита. Таким образом, NESW – плоскость математического горизонта

Плоскость, проходящая через полуденную и отвесную линии (ZNZ’S) называется плоскостью небесного меридиана , а плоскость, проходящая через небесное тело – плоскостью вертикала данного небесного тела . Большой круг, по которому она пересекает небесную сферу, называется вертикалом небесного тела .

В горизонтальной системе координат одной координатой является либо высота светила h, либо его зенитное расстояние z . Другой координатой является азимут A .

Высотой h светила называется дуга вертикала светила от плоскости математического горизонта до направления на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до −90° к надиру.

Зенитным расстоянием z светила называется дуга вертикала светила от зенита до светила. Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру.

Азимутом A светила называется дуга математического горизонта от точки юга до вертикала светила. Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до −180° к востоку (в геодезии азимуты отсчитываются от точки севера).

Особенности изменения координат небесных тел

За сутки звезда описывает круг, перпендикулярный оси мира (PP’), которая на широте φ наклонена к математическому горизонту на угол φ. Поэтому она будет двигаться параллельно математическому горизонту лишь при φ равном 90 градусов, то есть на Северном полюсе. Поэтому все звёзды, видимые там, будут незаходящими (в том числе и Солнце на протяжении полугода, см. долгота дня) а их высота h будет постоянной. На других широтах доступные для наблюдений в данное время года звёзды делятся на:

заходящие и восходящие (h в течение суток проходит через 0)

незаходящие (h всегда больше 0)

невосходящие (h всегда меньше 0)

Максимальная высота h звезды будет наблюдаться раз в день при одном из двух её прохождений через небесный меридиан – верхней кульминации, а минимальная – при втором из них – нижней кульминации. От нижней до верхней кульминации высота h звезды увеличивается, от верхней до нижней – уменьшается.

Первая экваториальная система координат

В этой системе основной плоскостью является плоскость небесного экватора. Одной координатой при этом является склонение δ (реже – полярное расстояние p). Другой координатой – часовой угол t.

Склонением δ светила называется дуга круга склонения от небесного экватора до светила, или угол между плоскостью небесного экватора и направлением на светило. Склонения отсчитываются в пределах от 0° до +90° к северному полюсу мира и от 0° до −90° к южному полюсу мира.

4.4. Экваториальная система координат

Полярным расстоянием p светила называется дуга круга склонения от северного полюса мира до светила, или угол между осью мира и направлением на светило. Полярные расстояния отсчитываются в пределах от 0° до 180° от северного полюса мира к южному.

Часовым углом t светила называется дуга небесного экватора от верхней точки небесного экватора (то есть точки пересечения небесного экватора с небесным меридианом) до круга склонения светила, или двугранный угол между плоскостями небесного меридиана и круга склонения светила. Часовые углы отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере). Иногда часовые углы отсчитываются от 0° до +180° (от 0h до +12h) к западу и от 0° до −180° (от 0h до −12h) к востоку.

Вторая экваториальная система координат

В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной координатой – склонение δ (реже – полярное расстояние p). Другой координатой является прямое восхождение α. Прямым восхождением (RA, α) светила называется дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Прямые восхождения отсчитываются в сторону, противоположную суточному вращению небесной сферы, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере).

RA – астрономический эквивалент земной долготы. И RA и долгота измеряют угол восток-запад вдоль экватора; обе меры берут отсчёт от нулевого пункта на экваторе. Для долготы, нулевой пункт – нулевой меридиан; для RA нулевой отметкой является место на небе, где Солнце пересекает небесный экватор в весеннее равноденствие.

Склонение (δ) в астрономии – одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах, минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу. У склонения всегда указывается знак, даже если склонение положительно.

Склонение небесного объекта, проходящего через зенит, равно широте наблюдателя (если считать северную широту со знаком +, а южную отрицательной). В северном полушарии Земли для заданной широты φ небесные объекты со склонением

δ > +90° − φ не заходят за горизонт, поэтому называются незаходящими. Если же склонение объекта δ Эклиптическая система координат

В этой системе основной плоскостью является плоскость эклиптики. Одной координатой при этом является эклиптическая широта β, а другой – эклиптическая долгота λ.

4.5. Связь эклиптической и второй экваториальной систем координат

Эклиптической широтой β светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до −90° к южному полюсу эклиптики.

Эклиптической долготой λ светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.

Галактическая система координат

В этой системе основной плоскостью является плоскость нашей Галактики. Одной координатой при этом является галактическая широта b, а другой – галактическая долгота l.

4.6. Галактическая и вторая экваториальная системы координат.

Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило.

Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до −90° к южному галактическому полюсу.

Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°.

Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000).

Координаты точки начала отсчёта C на эпоху 2000 в экваториальной системе координат составляют:

α C 2000 = 17º45′,6

δ C 2000 = −28º56′,2

Похожие документы:

Программа дисциплины «Моделирование движения многих тел»

. 2 модуль Небесная сфера. Астрономические координаты. Измерение времени (2ч) Небесная сфера, астрономические координаты (2ч . системы (2ч) Самостоятельная работа студентов (40 часов): — изучение небесной сферы и различных систем астрономических координат .

Задачи из любой области школьного курса; литературу, по которой они будут готовить собственные работы

. координат. Графические режимы экрана. Компьютерная система координат. Оператор SCREEN. Преобразование системы координат. . на материале темы «Небесная сфера. Астрономические координаты». Сканирование изображений с астрономическим содержанием. Карта .

«Разработка пилотного проекта модернизированной системы местных систем координат Субъектов Федераций»

. соответствующим рекомендациям международных астрономической и геодезической организаций . связи земной и небесной систем координат), с периодической сменой . сфер деятельности, использующих геодезию и картографию. «Местные системы координат Субъектов .

Млечномеда – Философия Сефирного сонцеализма сварги 21 Века

. Временной Координатой, дополнненная Традиционной Координатой Огненной . [1], на небесной сфере — 88 созвездии . волнами, или циклами, — астрономическими, астрологическими, историческими, духовными . собность системы. В системе познания выявляются .

Пространство событий

. равноденствия на небесной сфере весною 1894 года Согласно астрономическим справочникам, точка . вращательные координаты. Поступательное и вращательное движение. Системы отсчёта как с поступательными, так и вращательными системами координат. .

§ 2-3. Небесная сфера и координаты

2. Видимое суточное движение звёзд. При наблюдении звёздного неба на протяжении одного-двух часов мы убеждаемся в том, что оно вращается как единое целое таким образом, что с одной стороны звёзды поднимаются, а с другой — опускаются. Для нас, жителей Северного полушария, звёзды поднимаются с восточной части горизонта и смещаются вправо. Далее они достигают наивысшего положения в южной части неба и затем опускаются в западной части горизонта. В течение суток звёздное небо со всеми находящимися на нём светилами совершает один оборот. Таким образом, видимое суточное вращение звёздного неба происходит с востока на запад, если стоять лицом к югу, т. е. по часовой стрелке.

В северной части неба можно отыскать Полярную звезду. Кажется, что всё небо вращается вокруг неё (рис. 10). На самом же деле вокруг своей оси вращается Земля с запада на восток, а весь небосвод вращается в обратном направлении с востока на запад. Полярная звезда для данной местности остаётся почти неподвижной и на одной и той же высоте над горизонтом. Очевидно, что суточное движение звёзд (светил) — наблюдаемое кажущееся явление вращения небесного свода — отражает действительное вращение земного шара вокруг оси.

Фильм. Небесная сфера, координаты.

3. Основные точки, линии и плоскости небесной сферы. Нам кажется, что все звёзды расположены на некоторой сферической поверхности неба и одинаково удалены от наблюдателя. На самом деле они находятся от нас на различных расстояниях. Поэтому воображаемую поверхность небосвода стали называть небесной сферой.
Небесная сфера — это воображаемая сфера произвольного радиуса, центр которой в зависимости от решаемой задачи совмещается с той или иной точкой пространства. Центр небесной сферы может быть выбран в месте наблюдения (глаз наблюдателя), в центре Земли или Солнца и т. д. Понятием небесной сферы пользуются для угловых измерений, для изучения взаимного расположения и движения космических объектов на небе.

Рис. 11. Схема проецирования звезд в созвездии Большой Медведицы на небесной сфере

На поверхность небесной сферы проецируются видимые положения всех светил, а для удобства измерений на ней строят ряд точек и линий. Например, некоторые из звезд «ковша» Большой Медведицы находятся далеко одна от другой, но для земного наблюдателя они проецируются на один и тот же участок небесной сферы (рис. 11).

Прямая, проходящая через центр небесной сферы (рис. 12) и совпадающая с направлением нити отвеса в месте наблюдения, называется отвесной или вертикальной линией . Она пересекает небесную сферу в точках зенита (верхняя точка пересечения отвесной линии с небесной сферой) и надира (точка небесной сферы, противоположная зениту). Плоскость, проходящая через центр небесной сферы и перпендикулярная отвесной линии, называется плоскостью истинного или математического горизонта.

Большой круг небесной сферы, проходящий через зенит, светило и надир, называется кругом высоты , вертикальным кругом или просто вертикалом светила .

Ось мира — прямая, проходящая через центр небесной сферы параллельно оси вращения Земли, пересекающая небесную сферу в двух диаметрально противоположных точках.

Рисунок 12 — Небесная сфера: О — центр небесной сферы (местонахождение наблюдателя); PN — Северный полюс мира; РS — Южный полюс мира; PNPS — ось мира; Z — зенит; Z’ — надир; E — восток; W — запад; N — север; S — юг; Q — верхняя точка небесного экватора; Q’ — нижняя точка небесного экватора; ZZ’ — вертикальная линия; PNMPS — круг склонения; NS — полуденная линия; M — светило на небесной сфере

Рисунок 13 — Эклиптика

Точка пересечения оси мира с небесной сферой, вблизи которой находится Полярная звезда, называется Северным полюсом мира, противоположная точка — Южным полюсом мира . Полярная звезда отстоит от Северного полюса мира на угловом расстоянии около 1° (точнее 44′).
Большой круг, проходящий через центр небесной сферы и перпендикулярный оси мира, называют небесным экватором. Он делит небесную сферу на две части: Северное полушарие с вершиной в Северном полюсе мира и Южное — с вершиной в Южном полюсе мира.

Круг склонения светила — большой круг небесной сферы, проходящий через полюсы мира и светило.

Суточная параллель — малый круг небесной сферы, плоскость которого перпендикулярна оси мира.

Большой круг небесной сферы, проходящий через точки зенита, надира и полюсы мира, называется небесным меридианом . Небесный меридиан пересекается с истинным горизонтом в двух диаметрально противоположных точках. Точка пересечения истинного горизонта и небесного меридиана, ближайшая к Северному полюсу мира, называется точкой севера . Точка пересечения истинного горизонта и небесного меридиана, ближайшая к Южному полюсу мира, называется точкой юга . Линия, соединяющая точки севера и юга, называется полуденной линией . Она лежит на плоскости истинного горизонта. По направлению полуденной линии падают тени от предметов в полдень.

С небесным экватором истинный горизонт также пересекается в двух диаметрально противоположных точках — точке востока и т очке запада . Для наблюдателя, стоящего в центре небесной сферы лицом к точке севера, точка востока будет расположена справа, а точка запада — слева. Помня это правило, легко ориентироваться на местности.

Видимый годовой путь Солнца среди звёзд называется эклиптикой. В плоскости эклиптики лежит путь Земли вокруг Солнца, т. е. её орбита. Она наклонена к небесному экватору под углом 23° 27′ и пересекает его в точках весеннего (ϒ, около 21 марта) и осеннего (Ω, около 23 сентября) равноденствия (рис. 13).

§ 3. Небесные координаты

1. Системы координат. Положение светил определяется по отношению к точкам и кругам небесной сферы (см. рис. 12). Для этого введены небесные координаты, подобные географическим координатам на поверхности Земли.

В астрономии применяется несколько систем координат. Отличаются они друг от друга тем, что строятся по отношению к разным кругам небесной сферы. Небесные координаты отсчитываются дугами больших кругов или центральными углами, охватывающими эти дуги.

Небесные координаты — центральные углы или дуги больших кругов небесной сферы, с помощью которых определяют положение светил по отношению к основным кругам и точкам небесной сферы.

Рисунок 14 — Горизонтальная система координат: h — высота светила й над горизонтом; z — зенитное расстояние; А — азимут

Горизонтальная система координат . При астрономических наблюдениях удобно определять положение светил по отношению к горизонту. Горизонтальная система координат использует в качестве основного круга истинный горизонт. В этой системе координатами являются высота (h) и азимут (А).

Высота светила — угловое расстояние светила М от истинного горизонта, измеренное вдоль вертикального круга (рис. 14). Высота определяется в градусах, минутах и секундах. Она отсчитывается в пределах от 0 до +90° к зениту, если светило находится в видимой части небесной сферы, и от 0 до -90° к надиру, если светило находится под горизонтом.

Для измерения азимутов за начало отсчёта принимается точка юга. Азимут светила — угловое расстояние, измеренное вдоль истинного горизонта, от точки юга до точки пересечения горизонта с вертикальным кругом, проходящим через светило М (см. рис. 14). Азимут отсчитывается к западу от точки юга в пределах от 0 до 360°.

Горизонтальная система координат используется при топографической съёмке, в навигации. Вследствие суточного вращения небесной сферы высота и азимут светила со временем изменяются. Следовательно горизонтальные координаты имеют определённое значение только для известного момента времени.

Угловое расстояние от зенита до светила, измеренное вдоль вертикального круга, называется зенитным расстоянием (z). Оно отсчитывается в пределах от 0 до +180° к надиру. Высота и зенитное расстояние связаны соотношением: z + h = 90°.

Рисунок 15 — Экваториальная система небесных координат: δ — склонение светила М; α — прямое восхождение; t — часовой угол

Экваториальная система координат. Для построения звёздных карт и составления звёздных каталогов за основной круг небесной сферы удобно принять круг небесного экватора (рис. 15). Небесные координаты, в системе которых основным кругом является небесный экватор, называются экваториальной системой координат. В этой системе координатами служат склонение ( δ ) и прямое восхождение ( α ).
Склонение светила — угловое расстояние светила М от небесного экватора, измеренное вдоль круга склонения. Склонение отсчитывается в пределах от 0 до +90° к Северному полюсу мира и от 0 до -90° к Южному полюсу мира.

За начальную точку отсчёта на небесном экваторе принимается точка весеннего равноденствия γ , где Солнце бывает около 21 марта.

Прямое восхождение светила — угловое расстояние, измеренное вдоль небесного экватора, от точки весеннего равноденствия до точки пересечения небесного экватора с кругом склонения светила. Прямое восхождение отсчитывается в сторону, противоположную суточному вращению небесной сферы, в пределах от 0 до 360° в градусной мере или от 0 до 24 ч в часовой мере.

Для некоторых астрономических задач (связанных с измерением времени) вместо прямого восхождения (а) вводится часовой угол (t) (см. рис. 15). Часовой угол — это угловое расстояние, измеренное вдоль небесного экватора, от верхней точки небесного экватора до круга склонения светила. Отсчитывается часовой угол по направлению видимого суточного вращения небесной сферы, т. е. к западу, в пределах от 0 до 24 ч в часовой мере.

Координаты звёзд (α, δ) в экваториальной системе координат не связаны с суточным движением небесной сферы и изменяются очень медленно. Поэтому они применяются для составления звёздных карт и каталогов. Звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат. Онлайн карта звёздного неба. Набор звёздных карт смежных участков неба, покрывающих всё небо или некоторую его часть, называется звёздным атласом. В специальных списках звёзд, называемых звёздными каталогами, указываются координаты их места на небесной сфере, звёздная величина и другие параметры. Например, каталог Hubble Guide Star Catalog (GSC) содержит почти 19 млн объектов.

Рисунок 16 — Высота полюса мира над горизонтом

2. Лунно-солнечная прецессия. Ось вращения Земли наклонена к плоскости орбиты под углом 66°33′. Под воздействием притяжения Луны и Солнца из-за неоднородности распределения плотности массы внутри Земли ось описывает конус. Так как направление оси Земли изменяется, то перпендикулярная ей плоскость экватора также будет смещаться, что приводит к перемещению точки весеннего равноденствия. Это явление называется лунно-солнечной прецессией. Точка весеннего равноденствия перемещается навстречу видимому годичному движению Солнца на 50,3″ в год или на 1° в 71,6 года, совершая полный оборот по эклиптике за 25 770 лет. Полюса мира также перемещаются среди звёзд. В настоящее время Северный полюс мира находится возле Полярной звезды, а через 10 тыс. лет он переместится к Веге ( a Лиры).

3. Высота полюса мира над горизонтом. Мы уже знаем, что Полярная звезда, находящаяся вблизи Северного полюса мира, остаётся почти на одной высоте над горизонтом на данной широте при суточном вращении звёздного неба. При перемещении наблюдателя с севера на юг, где географическая широта меньше, Полярная звезда опускается к горизонту, т. е. существует зависимость между высотой полюса мира и географической широтой места наблюдения.

На рисунке 16 земной шар и небесная сфера изображены в сечении плоскостью небесного меридиана места наблюдения. Наблюдатель из точки О видит полюс мира на высоте Ð NOP = hP. Направление оси мира ОР параллельно земной оси. Угол при центре Земли Ð OO’q соответствует географической широте места наблюдения ф. Так как радиус Земли в точке наблюдения перпендикулярен плоскости истинного горизонта, а ось мира перпендикулярна плоскости географического экватора, то Ð NOP и Ð OO’q равны между собой как углы с взаимно перпендикулярными сторонами. Таким образом, угловая высота полюса мира над горизонтом равна географической широте места наблюдения:

С другой стороны, из рисунка 16 следует, что Ð QOZ определяет собой величину склонения зенита dZ. Поэтому можно записать, что

Равенство (2) характеризует зависимость между географической широтой места наблюдения и соответствующими горизонтальной и экваториальной координатами светила.

Суточное вращение звёздного неба на средних широтах

Суточное вращение звёздного неба на земном экваторе

По мере перемещения наблюдателя к Северному полюсу Земли Северный полюс мира поднимается над горизонтом. На полюсе Земли полюс мира будет находиться в зените. Звёзды здесь движутся по кругам, параллельным горизонту, который совпадает с небесным экватором. Становится неопределённым небесный меридиан, теряют смысл точки севера, юга, востока и запада.

На средних географических широтах ось мира и небесный экватор наклонены к горизонту, суточные пути звёзд также наклонены к горизонту. Поэтому наблюдаются восходящие и заходящие звёзды. Под восходом понимается явление пересечения светилом восточной части горизонта, а под заходом — западной части горизонта. В средних широтах, например на территории Республики Беларусь, наблюдаются звёзды северных околополярных созвездий, которые никогда не опускаются под горизонт. Они называются незаходящими . Звёзды, расположенные около Южного полюса мира, у нас никогда не восходят. Их называют невосходящими .

На экваторе Земли ось мира совпадает с полуденной линией, а полюсы мира — с точками севера и юга. Небесный экватор проходит через точки востока, запада, точки зенита и надира. Суточные пути всех звёзд перпендикулярны горизонту, и каждая из них половину суток находится над горизонтом.

Небесная сфера: понятие, элементы, отвесная линия, суточное вращение, системы координат

Из статьи вы узнаете: что такое небесная сфера, как она устроена, что такое отвесная линия и какие понятия с ней связаны, как происходит суточное вращение и какие сферические системы координат существуют. А также, как меняется вид звездного неба в зависимости от времени года, суток и места вашего расположения.

Что такое небесная сфера

Долгое время люди считали Землю плоским диском, и что все небесные тела вращаются вокруг него по небесному куполу. Времена невежества давно прошли, а с полетом в космос не осталось никаких сомнений, что земля имеет форму шара. Но понятие купола трансформировалось в термин “небесная сфера”.

Небесная сфера – это шар неограниченного размера, на него спроецированы все видимые звезды. В центре находится наблюдатель, от которого и строится вся сфера вне зависимости от того, находится ли он на Земле или на борту космической станции. Такая проекция призвана упрощать решение астрономических задач.

Элементы небесной сферы

Каждый элемент в космосе спроецирован на небесной сфере земли. Зачастую астрономы используют разные координатные системы для решения разных задач, но все они схожи. Наука, изучающая расположение звезд на сфере носит название сферической астрономии и включает в себя особые виды механики и тригонометрии, которые были разработаны специально для работы с поверхностью шара, а не плоскостями, как большинство тригонометрических наук.

Элементы небесной сферы

Небесная сфера включает в себя не только расположение всех светил, но и многие ориентиры, с помощью которых ученые могут четко определять, измерять и прогнозировать движение звезд. Важно понимать, что в большинстве расчетов сфера представляет собой лишь чертеж, на котором обозначены многие условные обозначения, рассмотренные ниже.

Отвесная линия и связанные с ней понятия

Отвесная линия, также известная, как вертикальная линия, – это ось, совпадающая с положением нити воображаемого маятника (отвеса), находящегося в центре сферы. Эта линия пересекает ее в двух точках: ровно над головой наблюдателя (в зените) и под ногами (в надире). Является основной осью небесной сферы в горизонтальной системе координат.

Небесная сфера: понятие, элементы, отвесная линия, суточное вращение, системы координат

Астрономический (истинный) горизонт – большой круг небесной сферы, плоскость которого строго перпендикулярна отвесной линии. Он делит сферу на две равные части: видимую полусферу, находящуюся выше наблюдателя и невидимую, находящуюся ниже. Ошибочно предполагать, что при наблюдении с земли истинный горизонт будет совпадать с видимым. Их положение будет отличаться из-за искривления света и того, что точка наблюдения оторвана от поверхности земли.

Плоскость, проходящая через центр небесной сферы

Для того чтобы ориентироваться по небесной сфере, на ней существует собственная координатная сетка, но вместо осей ординат и абсцисс на ней есть круги высот и альмукантараты.

Круг высот – это плоскость, проходящая перпендикулярно астрономическому горизонту через зенит небесной сферы, надир и небесное светило. Альмукантарат же в свою очередь представляет собой плоскость параллельную истинному горизонту. Точка пересечения этих плоскостей с небесной сферой и определяет сферическую координату светила.

Суточное вращение небесной сферы и связанные с ним понятия

Ось мира схожа с осью вращения Земли. Она проходит через северный и южный полюса мира, которые могут не совпадать с точками зенита и надира. Вокруг этой прямой и вращается небесная сфера, причем строго против часовой стрелки.

Небесный экватор, как и Земной, представляет собой линию, делящую сферу на две равные части – северное и южное полушарие. Небесный экватор перпендикулярен оси мира и проходит строго через центр сферы.

Круг светила – круг, обозначающий движение Солнца по небесной сфере, который проходит через оба полушария и точку, на которой находится небесное тело.

Суточная параллель – круг небесной сферы, по которому светило совершает свое суточное движение, причем в северном полушарии все наблюдаемые светила всегда движутся против часовой стрелки, а в южном – по часовой стрелке.

Вместе круги светил и суточные параллели образуют еще одну систему координат, называемую экваториальной.

Термины, связанные с понятием “Отвесная линия” и “Вращение небесной сферы”

Так как небесный экватор и истинный горизонт – это два круга, у них есть всего 2 точки пересечения. Они называются точками запада и востока. Небесные светила всегда восходят из-за горизонта возле точки востока, а заходят возле точки запада.

Параллельно отвесной линии и оси мира проходит еще одна плоскость – небесный меридиан. Он разделяет сферу на два полушария – восточное и западное.

Деление планеты на два полушария

Полуденная линия небесной сферы – это прямая, на которой пересекаются истинный горизонт и небесный меридиан. Пересечение этой линии с небесной сферой образует еще две новые точки: точка севера, расположенная ближе к северному полюсу, и точка юга, приближенная к южному полюсу.

Годовое движение Солнца по небесной сфере

Солнце движется на небесной сфере по определенной траектории, называемой эклиптикой. Она образует круг, который отклонен от небесного экватора на 23 градуса.

В точках равноденствия эклиптика пересекает небесный экватор. Они называются точками весеннего и осеннего равноденствия, так как через них солнце переходит из северного полушария в южное и наоборот. Обе точки равноденствия соединены прямой, проходящей через центр сферы, называемой линией равноденствия.

Точки равноденствия

Если провести от центра линии равноденствия прямую, перпендикулярную плоскости небесного экватора, то она отметит на небесной сфере еще две важные точки – летнего и зимнего солнцестояния.

Чаще всего на схемах и моделях точки равноденствия и солнцестояния обозначаются зодиакальными символами, которые соответствовали созвездиям, в которых размещены отметки на сфере:

  • Весеннее равноденствие – Овен;
  • Осеннее равноденствие – Весы;
  • Зимнее солнцестояние – Козерог;
  • Летнее солнцестояние – Рак

Еще одна важная прямая на небесной сфере – это ось эклиптики. Она перпендикулярна плоскости эклиптики и проходит через центр сферы, отмечая на ней две точки – северный и южный полюса эклиптики.

Сферические системы координат

На поверхности небесной сферы проблематично пользоваться классической трехмерной системой координат. Для этого была разработана специальная система небесных координат, с помощью которой астрономы могут фиксировать и описывать положение всех наблюдаемых небесных тел. Две первичные координаты определяются двумя дугами, а третья (расстояние до объекта) часто может быть неизвестна.

Известно, что сферические системы начали применяться еще около 2500 лет назад. Первым описал поведение геометрических фигур и их взаимодействие на поверхности шара Евклид. В последствии его труды стали использоваться физиками и астрономами по всему миру и получили название “Евклидова геометрия”.

Горизонтальная система координат

Чаще всего используется, когда центр небесной сферы находится на поверхности земли для определения положения какого-либо тела на небе. Для получения координат не требуется сложных расчетов и они могут быть получены при помощи простого телескопа на азимутальной установке. Благодаря своей простоте и распространенности, используется большинством астрономических программ для записи положений звезд.

Горизонтальная система координат

Согласно этой координатной системе, точка отсчета находится в центре небесной сферы и в качестве основной использует плоскость истинного горизонта. Первая координата обычно определяется либо по высоте необходимой точки, либо по ее зенитному расстоянию. Вторая координата определяется азимутом.

Разберем эти термины подробнее:

  • Высота (h) – это дуга, проведенная под прямым углом от точки пересечения горизонта с небесной сферой до светила. Единица измерения – угол между отрезками от светила до центра сферы и от центра сферы до точки пересечения линии высоты с горизонтом. Измеряется в градусах от 90 до -90.
  • Зенитное расстояние (z) может быть измерено несколькими способами. Во-первых, как угол между отвесной линией и точкой пересечения небесной сферы с радиусом, соединяющим светило и центр сферы. Во-вторых как расстояние от зенита до светила. Также, как и высота измеряется в градусах, но в диапазоне от 0 до 180, где 0 – это точка зенита, а 180 – надира.
  • Азимут (А) – это угол дуги, проведенной от южной точки до круга светила. Отсчитывается азимут всегда к западу и измеряется в диапазоне от 0 до 360 градусов, но в некоторых научных документах можно встретить и диапазон от 180 до -180. Не стоит путать астрономический азимут с навигационным, так как последний отсчитывается по направлению к северу.

Координаты светил на небесной сфере постоянно изменяются как вследствие вращения самой сферы, так и из-за причин от нее не зависящих. Так, например, приведенные выше измерения меняются естественно, в результате суточного вращения, но такие показатели, как, например, склонение, или прямое восхождение остаются постоянными вне зависимости от вращения сферы. Они могут меняться лишь под воздействием внешних сил.

Экваториальная система координат № 1

Для использования этой системы требуется специальная установка с телескопом, называемая экваториальной. Наиболее распространено ее применение для определения точного времени движения небесных тел.

Основная плоскость для этой системы – небесный экватор. Первая координата определяется склонением или полярным расстоянием, а вторая представлена часовым углом.

Склонение – это угол между плоскостью экватора и прямой, проходящей через центр сферы и светилом. Как и высота, измеряется в градусах от +90 до -90. Если небесное тело проходит через точку зенита, то его склонение всегда равно широте центра сферы (наблюдателя).

Полярное расстояние и склонение

Полярное расстояние – дуга между точкой северного полюса и светилом. Измеряется при помощи угла между осью мира и точкой небесной сферы, на которой находится светило. Измеряется в градусах от 0 до 180 от северного полюса к южному.

Часовой угол напрямую зависит от координаты склонения. Он представляет собой угол между центром сферы, точкой, где экватор пересекается с меридианом и точкой склонения. В разных документах могут встречаться как измерения в градусах (от 0 до 360), так и в часовом представлении (от 0 до 24 часов). Также встречается отчет от 180 до -180 градусов и от 12 до -12 часов.

Экваториальная система координат

Экваториальная система координат № 2

Это основная система координат в астрономии. Она позволяет не только определять местоположение отдельных звезд, но и составлять точнейшие звездные карты. Ее основное отличие в том, что она зависима от точки весеннего равноденствия, изменение положения которой характерно для определения эпохи исследования. Из-за этого при изучении данных, полученных в прошлом обязательна корректировка по параллаксу и вычисление координаты точки весеннего равноденствия для конкретной даты.

Как и предыдущая система, она основана на плоскости экватора небесной сферы, но вместо часовых углов в ней используется координата прямого восхождения.

Прямое восхождение – это дуга, соединяющая точку весеннего равноденствия и круг склонения светила. В отличии от остальных координатных систем, во второй экваториальной координаты отсчитываются в сторону противоположную направлению движения сферы. Также, как и часовой угол, восхождение измеряется и в градусах (0–60), и в часах (0–4).

Экваториальная система координат

Еще одна величина, характерная только для этой системы – RA. Она представляет собой сферическую аналогию долготы. Как и долгота, она измеряет угол вдоль экватора относительно конкретной точки, называемой нулевым меридианом. Эта точка обозначает ближайшее к точке весеннего равноденствия место, где Солнце пересекает небесный меридиан.

Эклиптическая система координат

Как следует из названия, основание этой координатной системы – плоскость эклиптики.

Две ее основные координаты – это эклиптическая широта и эклиптическая долгота:

  1. Эклиптическая широта – это угол, между центром небесной сферы, плоскостью эклиптики и точкой, которой обозначено светило. Измеряется широта в диапазоне от 90 до -90 градусов от северного полюса к южному.
  2. Эклиптическая долгота же представляет собой угол между кругом широты и отрезком от центра сферы до точки весеннего равноденствия. Как и большинство других координат, измеряется в градусах, от 0 до 360 в сторону движения солнца по сфере.

В основном эта система координат используется для изучения тел, входящих в Солнечную систему. Например, для определения орбит планет и их спутников.

Изменение вида звездного неба в зависимости от места, времени суток и года

На движение небесной сферы в первую очередь влияет то, когда и откуда происходят наблюдения. Так, например, если наблюдатель находится в точке зенита, то видимые звезды для него никогда не изменятся. Они будут вращаться вокруг зенита и ни одна звезда не зайдет и не поднимется из-за горизонта. Именно поэтому с каждого из полюсов доступно лишь одно полушарие небосвода, а звезды второго будут все время скрыты.

Однако, уже на экваторе ситуация полностью противоположная. Звезды на небесной сфере здесь постоянно движутся и с экватора можно видеть абсолютно все светила обоих полушарий. Двигаться они будут перпендикулярно горизонту в противоположную вращению земли сторону.

Однако, не только суточный цикл планеты влияет на движение звезд. Земля также движется и вокруг Солнца, что тоже накладывает свой отпечаток. Каждый день траектория движения Солнца по небу немного изменяется. Ученые выяснили, что это изменение равно 4 угловым секундам, при скорости поворота планеты 1уг.сек/мин становится очевидно, что каждый день становится на 4 минуты длиннее или короче в зависимости от полушария. Для астрономов же это значит, что звездные сутки короче солнечных на 4 минуты.

Это также говорит о том, что каждую ночь созвездия, восходящие на небе смещаются по направлению с востока на запад на 4 угловых секунды вместе с солнцем. Таким образом каждый месяц длительность светового дня изменяется примерно на 1,5-2 часа, а, созвездия, которые можно было наблюдать на небе, полностью проходят путь через всю небесную сферу, уступая место следующим. Через год, когда планета делает полный оборот вокруг Солнца, этот цикл замыкается и начинается заново.

Горин Павел/ автор статьи

Павел Горин — психолог и автор популярных статей о внутреннем мире человека. Он работает с темами самооценки, отношений и личного роста. Его экспертность основана на практическом консультировании и современных психологических подходах.

Понравилась статья? Поделиться с друзьями:
psihologiya-otnosheniy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: